Risk assessment and management strategy of two new NDSRIs in a pharmaceutical drug product for the treatment of a rare disease: From prediction to control
Partha Mukherjee, Xin Yao, Sheela Sitaraman, Jeff Castelli, Jon Brudvig, Saroj Ramdas
{"title":"Risk assessment and management strategy of two new NDSRIs in a pharmaceutical drug product for the treatment of a rare disease: From prediction to control","authors":"Partha Mukherjee, Xin Yao, Sheela Sitaraman, Jeff Castelli, Jon Brudvig, Saroj Ramdas","doi":"10.1016/j.xphs.2025.01.016","DOIUrl":null,"url":null,"abstract":"<div><div>N-nitrosamines are a class of compounds belonging to the “cohort of concern” and characterized by the linkage of a nitroso group (-N=O) to an amine functional group (-NR<sub>2</sub>). Some of these compounds are mutagenic, genotoxic, and potentially carcinogenic agents in humans, which necessitates control at acceptable safe levels. The current work presents a comprehensive risk assessment and mitigation strategy for two complex diastereomeric nitrosamines as New Drug Substance Related Impurities (NDSRIs) for miglustat 65mg capsules. A sequential risk assessment and management strategy was executed, which included predictive chemistry of formation, organic synthesis, and in-silico mutagenic and carcinogenic risk assessments. These activities were followed by the application of a highly sensitive validated analytical method with a Limit of Quantitation of 6.9 ppb for the combined NDSRIs. Confirmatory testing of three drug product batches were performed as per regulatory requirements to verify adherence to a conservative Acceptable Intake Limit of 18 ng/day for the combined NDSRIs.</div></div>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":"114 3","pages":"Pages 1572-1582"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022354925000346","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
N-nitrosamines are a class of compounds belonging to the “cohort of concern” and characterized by the linkage of a nitroso group (-N=O) to an amine functional group (-NR2). Some of these compounds are mutagenic, genotoxic, and potentially carcinogenic agents in humans, which necessitates control at acceptable safe levels. The current work presents a comprehensive risk assessment and mitigation strategy for two complex diastereomeric nitrosamines as New Drug Substance Related Impurities (NDSRIs) for miglustat 65mg capsules. A sequential risk assessment and management strategy was executed, which included predictive chemistry of formation, organic synthesis, and in-silico mutagenic and carcinogenic risk assessments. These activities were followed by the application of a highly sensitive validated analytical method with a Limit of Quantitation of 6.9 ppb for the combined NDSRIs. Confirmatory testing of three drug product batches were performed as per regulatory requirements to verify adherence to a conservative Acceptable Intake Limit of 18 ng/day for the combined NDSRIs.
期刊介绍:
The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.