Jiyuan Cao , Yu Zhang , Yingnan Jiang , Guangyao Li , Guoying Zhang , Jianya Ling
{"title":"Trametes robiniophila Murr. extract alleviates influenza-induced lung injury by regulating gut microbiota and metabolites","authors":"Jiyuan Cao , Yu Zhang , Yingnan Jiang , Guangyao Li , Guoying Zhang , Jianya Ling","doi":"10.1016/j.jpba.2025.116700","DOIUrl":null,"url":null,"abstract":"<div><div><em>Trametes robiniophila</em> Murr. (Huaier) is a traditional medicinal fungus known for its pharmacological properties, including heat-clearing, detoxifying, anti-inflammatory, and antitumor effects. Our previous research has demonstrated its antiviral activity, but the exact therapeutic mechanisms remain unclear. This study aims to explore the mechanisms of 50 % methanol extract of Huaier (HME) in treating influenza using 16S rRNA high-throughput sequencing and metabolomics techniques. The results showed that the HME significantly reduced the lung index and viral load in the lungs of influenza-infected mice, alleviated pathological damage in lung tissues, and downregulated the expression levels of inflammatory cytokines Interleukin-6 (IL-6), Tumor Necrosis Factor-<em>α</em> (TNF-<em>α</em>) and Interferon-<em>γ</em> (IFN-<em>γ</em>) in lung tissues. Furthermore, the HME enhanced the diversity of gut microbiota in infected mice, significantly increasing the relative abundance of beneficial bacteria, such as <em>Alistipes</em> and <em>Alloprevotella</em>. Through non-targeted metabolomic analysis of mouse feces, 45 potential biomarkers were identified. Meanwhile, the low-dose of HME was able to restore the disrupted metabolic levels. Analysis of gut microbiota and biomarker pathways revealed that HME primarily affects nicotinate and nicotinamide metabolism, which may be the key mechanism for its intervention in influenza. In addition, Spearman correlation analysis showed that most biomarkers were significantly associated with pharmacodynamics and the <em>Alloprevotella</em>.</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"257 ","pages":"Article 116700"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S073170852500041X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Trametes robiniophila Murr. (Huaier) is a traditional medicinal fungus known for its pharmacological properties, including heat-clearing, detoxifying, anti-inflammatory, and antitumor effects. Our previous research has demonstrated its antiviral activity, but the exact therapeutic mechanisms remain unclear. This study aims to explore the mechanisms of 50 % methanol extract of Huaier (HME) in treating influenza using 16S rRNA high-throughput sequencing and metabolomics techniques. The results showed that the HME significantly reduced the lung index and viral load in the lungs of influenza-infected mice, alleviated pathological damage in lung tissues, and downregulated the expression levels of inflammatory cytokines Interleukin-6 (IL-6), Tumor Necrosis Factor-α (TNF-α) and Interferon-γ (IFN-γ) in lung tissues. Furthermore, the HME enhanced the diversity of gut microbiota in infected mice, significantly increasing the relative abundance of beneficial bacteria, such as Alistipes and Alloprevotella. Through non-targeted metabolomic analysis of mouse feces, 45 potential biomarkers were identified. Meanwhile, the low-dose of HME was able to restore the disrupted metabolic levels. Analysis of gut microbiota and biomarker pathways revealed that HME primarily affects nicotinate and nicotinamide metabolism, which may be the key mechanism for its intervention in influenza. In addition, Spearman correlation analysis showed that most biomarkers were significantly associated with pharmacodynamics and the Alloprevotella.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.