Effect of Artificial Intelligence Helpfulness and Uncertainty on Cognitive Interactions with Pharmacists: Randomized Controlled Trial.

IF 5.8 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Chuan-Ching Tsai, Jin Yong Kim, Qiyuan Chen, Brigid Rowell, X Jessie Yang, Raed Kontar, Megan Whitaker, Corey Lester
{"title":"Effect of Artificial Intelligence Helpfulness and Uncertainty on Cognitive Interactions with Pharmacists: Randomized Controlled Trial.","authors":"Chuan-Ching Tsai, Jin Yong Kim, Qiyuan Chen, Brigid Rowell, X Jessie Yang, Raed Kontar, Megan Whitaker, Corey Lester","doi":"10.2196/59946","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Clinical decision support systems leveraging artificial intelligence (AI) are increasingly integrated into health care practices, including pharmacy medication verification. Communicating uncertainty in an AI prediction is viewed as an important mechanism for boosting human collaboration and trust. Yet, little is known about the effects on human cognition as a result of interacting with such types of AI advice.</p><p><strong>Objective: </strong>This study aimed to evaluate the cognitive interaction patterns of pharmacists during medication product verification when using an AI prototype. Moreover, we examine the impact of AI's assistance, both helpful and unhelpful, and the communication of uncertainty of AI-generated results on pharmacists' cognitive interaction with the prototype.</p><p><strong>Methods: </strong>In a randomized controlled trial, 30 pharmacists from professional networks each performed 200 medication verification tasks while their eye movements were recorded using an online eye tracker. Participants completed 100 verifications without AI assistance and 100 with AI assistance (either with black box help without uncertainty information or uncertainty-aware help, which displays AI uncertainty). Fixation patterns (first and last areas fixated, number of fixations, fixation duration, and dwell times) were analyzed in relation to AI help type and helpfulness.</p><p><strong>Results: </strong>Pharmacists shifted 19%-26% of their total fixations to AI-generated regions when these were available, suggesting the integration of AI advice in decision-making. AI assistance did not reduce the number of fixations on fill images, which remained the primary focus area. Unhelpful AI advice led to longer dwell times on reference and fill images, indicating increased cognitive processing. Displaying AI uncertainty led to longer cognitive processing times as measured by dwell times in original images.</p><p><strong>Conclusions: </strong>Unhelpful AI increases cognitive processing time in the original images. Transparency in AI is needed in \"black box\" systems, but showing more information can add a cognitive burden. Therefore, the communication of uncertainty should be optimized and integrated into clinical workflows using user-centered design to avoid increasing cognitive load or impeding clinicians' original workflow.</p><p><strong>Trial registration: </strong>ClinicalTrials.gov NCT06795477; https://clinicaltrials.gov/study/NCT06795477.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"27 ","pages":"e59946"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829174/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/59946","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Clinical decision support systems leveraging artificial intelligence (AI) are increasingly integrated into health care practices, including pharmacy medication verification. Communicating uncertainty in an AI prediction is viewed as an important mechanism for boosting human collaboration and trust. Yet, little is known about the effects on human cognition as a result of interacting with such types of AI advice.

Objective: This study aimed to evaluate the cognitive interaction patterns of pharmacists during medication product verification when using an AI prototype. Moreover, we examine the impact of AI's assistance, both helpful and unhelpful, and the communication of uncertainty of AI-generated results on pharmacists' cognitive interaction with the prototype.

Methods: In a randomized controlled trial, 30 pharmacists from professional networks each performed 200 medication verification tasks while their eye movements were recorded using an online eye tracker. Participants completed 100 verifications without AI assistance and 100 with AI assistance (either with black box help without uncertainty information or uncertainty-aware help, which displays AI uncertainty). Fixation patterns (first and last areas fixated, number of fixations, fixation duration, and dwell times) were analyzed in relation to AI help type and helpfulness.

Results: Pharmacists shifted 19%-26% of their total fixations to AI-generated regions when these were available, suggesting the integration of AI advice in decision-making. AI assistance did not reduce the number of fixations on fill images, which remained the primary focus area. Unhelpful AI advice led to longer dwell times on reference and fill images, indicating increased cognitive processing. Displaying AI uncertainty led to longer cognitive processing times as measured by dwell times in original images.

Conclusions: Unhelpful AI increases cognitive processing time in the original images. Transparency in AI is needed in "black box" systems, but showing more information can add a cognitive burden. Therefore, the communication of uncertainty should be optimized and integrated into clinical workflows using user-centered design to avoid increasing cognitive load or impeding clinicians' original workflow.

Trial registration: ClinicalTrials.gov NCT06795477; https://clinicaltrials.gov/study/NCT06795477.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.40
自引率
5.40%
发文量
654
审稿时长
1 months
期刊介绍: The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades. As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor. Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信