Duolong Zhu, Katherine J Wozniak, Firas Midani, Shaohui Wang, Xingmin Sun, Robert A Britton
{"title":"Control of <i>Clostridioides difficile</i> virulence and physiology by the flagellin homeostasis checkpoint FliC-FliW-CsrA in the absence of motility.","authors":"Duolong Zhu, Katherine J Wozniak, Firas Midani, Shaohui Wang, Xingmin Sun, Robert A Britton","doi":"10.1128/mbio.03801-24","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations affecting <i>Clostridioides difficile</i> flagellin (FliC) have been shown to be hypervirulent in animal models and display increased toxin production and alterations in central metabolism. The regulation of flagellin levels in bacteria is governed by a tripartite regulatory network involving <i>fliC</i>, <i>fliW</i>, and <i>csrA</i>, which creates a feedback system to regulate flagella production. Through genomic analysis of <i>C. difficile</i> clade 5 strains (non-motile), we identified they have jettisoned many of the genes required for flagellum biosynthesis yet retain the major flagellin gene <i>fliC</i> and regulatory gene <i>fliW</i>. We therefore investigated the roles of <i>fliC</i>, <i>fliW</i>, and <i>csrA</i> in the clade 5 ribotype 078 strain <i>C. difficile</i> 1015, which lacks flagella and is non-motile. Analysis of mutations in <i>fliC</i>, <i>fliW</i>, and <i>csrA</i> (and all combinations) on <i>C. difficile</i> pathogenesis indicated that FliW plays a central role in <i>C. difficile</i> virulence as animals infected with strains carrying a deletion of <i>fliW</i> showed decreased survival and increased disease severity. These <i>in vivo</i> findings were supported by <i>in vitro</i> studies showing that mutations impacting the activity of FliW showed increased toxin production. We further identified that FliW can interact with the toxin-positive regulator TcdR, indicating that modulation of toxin production via FliW occurs by sequestering TcdR from activating toxin transcription. Furthermore, disruption of the <i>fliC-fliW-csrA</i> network results in significant changes in carbon source utilization and sporulation. This work highlights that key proteins involved in flagellar biosynthesis retain their regulatory roles in <i>C. difficile</i> pathogenesis and physiology independent of their functions in motility.</p><p><strong>Importance: </strong><i>Clostridioides difficile</i> is a leading cause of nosocomial antibiotic-associated diarrhea in developed countries with many known virulence factors. In several pathogens, motility and virulence are intimately linked by regulatory networks that allow coordination of these processes in pathogenesis and physiology. Regulation of <i>C. difficile</i> toxin production by FliC has been demonstrated <i>in vitro</i> and <i>in vivo</i> and has been proposed to link motility and virulence. Here, we show that clinically important, non-motile <i>C. difficile</i> strains have conserved FliC and regulatory partners FliW and CsrA, despite lacking the rest of the machinery to produce functional flagella. Our work highlights a novel role for flagellin outside of its role in motility and FliW in the pathogenesis and physiology of <i>C. difficile</i>.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0380124"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.03801-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mutations affecting Clostridioides difficile flagellin (FliC) have been shown to be hypervirulent in animal models and display increased toxin production and alterations in central metabolism. The regulation of flagellin levels in bacteria is governed by a tripartite regulatory network involving fliC, fliW, and csrA, which creates a feedback system to regulate flagella production. Through genomic analysis of C. difficile clade 5 strains (non-motile), we identified they have jettisoned many of the genes required for flagellum biosynthesis yet retain the major flagellin gene fliC and regulatory gene fliW. We therefore investigated the roles of fliC, fliW, and csrA in the clade 5 ribotype 078 strain C. difficile 1015, which lacks flagella and is non-motile. Analysis of mutations in fliC, fliW, and csrA (and all combinations) on C. difficile pathogenesis indicated that FliW plays a central role in C. difficile virulence as animals infected with strains carrying a deletion of fliW showed decreased survival and increased disease severity. These in vivo findings were supported by in vitro studies showing that mutations impacting the activity of FliW showed increased toxin production. We further identified that FliW can interact with the toxin-positive regulator TcdR, indicating that modulation of toxin production via FliW occurs by sequestering TcdR from activating toxin transcription. Furthermore, disruption of the fliC-fliW-csrA network results in significant changes in carbon source utilization and sporulation. This work highlights that key proteins involved in flagellar biosynthesis retain their regulatory roles in C. difficile pathogenesis and physiology independent of their functions in motility.
Importance: Clostridioides difficile is a leading cause of nosocomial antibiotic-associated diarrhea in developed countries with many known virulence factors. In several pathogens, motility and virulence are intimately linked by regulatory networks that allow coordination of these processes in pathogenesis and physiology. Regulation of C. difficile toxin production by FliC has been demonstrated in vitro and in vivo and has been proposed to link motility and virulence. Here, we show that clinically important, non-motile C. difficile strains have conserved FliC and regulatory partners FliW and CsrA, despite lacking the rest of the machinery to produce functional flagella. Our work highlights a novel role for flagellin outside of its role in motility and FliW in the pathogenesis and physiology of C. difficile.
期刊介绍:
mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.