Kartik Sachar, Katarzyna Kanarek, Jake Colautti, Youngchang Kim, Eran Bosis, Gerd Prehna, Dor Salomon, John C Whitney
{"title":"A conserved chaperone protein is required for the formation of a non-canonical type VI secretion system spike tip complex.","authors":"Kartik Sachar, Katarzyna Kanarek, Jake Colautti, Youngchang Kim, Eran Bosis, Gerd Prehna, Dor Salomon, John C Whitney","doi":"10.1016/j.jbc.2025.108242","DOIUrl":null,"url":null,"abstract":"<p><p>Type VI secretion systems (T6SS) are dynamic protein nanomachines found in Gram-negative bacteria that deliver toxic effector proteins into target cells in a contact-dependent manner. Prior to secretion, many T6SS effector proteins require chaperones and/or accessory proteins for proper loading onto the structural components of the T6SS apparatus. However, despite their established importance, the precise molecular function of several T6SS accessory protein families remains unclear. In this study, we set out to characterize the DUF2169 family of T6SS accessory proteins. Using gene co-occurrence analyses, we find that DUF2169-encoding genes strictly co-occur with genes encoding T6SS spike complexes formed by VgrG and 'PAAR-like' DUF4150 domains. Although structural similar to PAAR domains, DUF4150 domains lack PAAR motifs and instead contain a conserved PIPY motif, leading us to designate them PIPY domains. Next, we present both genetic and biochemical evidence that PIPY domains require a cognate DUF2169 protein to form a functional T6SS spike complex with VgrG. This contrasts with canonical PAAR proteins, which bind VgrG on their own to form functional spike complexes. By solving the first crystal structure of a DUF2169 protein, we show that this T6SS accessory protein adopts a novel protein fold. Furthermore, biophysical and structural modeling data suggest that DUF2169 contains a dynamic loop that physically interacts with a hydrophobic patch on the surface of its cognate PIPY domain. Based on these findings, we propose a model whereby DUF2169 proteins function as molecular chaperones that maintain VgrG-PIPY spike complexes in a secretion-competent state prior to their export by the T6SS apparatus.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108242"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108242","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Type VI secretion systems (T6SS) are dynamic protein nanomachines found in Gram-negative bacteria that deliver toxic effector proteins into target cells in a contact-dependent manner. Prior to secretion, many T6SS effector proteins require chaperones and/or accessory proteins for proper loading onto the structural components of the T6SS apparatus. However, despite their established importance, the precise molecular function of several T6SS accessory protein families remains unclear. In this study, we set out to characterize the DUF2169 family of T6SS accessory proteins. Using gene co-occurrence analyses, we find that DUF2169-encoding genes strictly co-occur with genes encoding T6SS spike complexes formed by VgrG and 'PAAR-like' DUF4150 domains. Although structural similar to PAAR domains, DUF4150 domains lack PAAR motifs and instead contain a conserved PIPY motif, leading us to designate them PIPY domains. Next, we present both genetic and biochemical evidence that PIPY domains require a cognate DUF2169 protein to form a functional T6SS spike complex with VgrG. This contrasts with canonical PAAR proteins, which bind VgrG on their own to form functional spike complexes. By solving the first crystal structure of a DUF2169 protein, we show that this T6SS accessory protein adopts a novel protein fold. Furthermore, biophysical and structural modeling data suggest that DUF2169 contains a dynamic loop that physically interacts with a hydrophobic patch on the surface of its cognate PIPY domain. Based on these findings, we propose a model whereby DUF2169 proteins function as molecular chaperones that maintain VgrG-PIPY spike complexes in a secretion-competent state prior to their export by the T6SS apparatus.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.