Remimazolam alleviates myocardial ischemia/reperfusion injury and inflammation via inhibition of the NLRP3/IL‑1β pathway in mice.

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
International journal of molecular medicine Pub Date : 2025-04-01 Epub Date: 2025-01-31 DOI:10.3892/ijmm.2025.5498
Xueru Liu, Guojing Shui, Yan Wang, Tangting Chen, Peng Zhang, Li Liu, Chunhong Li, Tao Li, Xiaobin Wang
{"title":"Remimazolam alleviates myocardial ischemia/reperfusion injury and inflammation via inhibition of the NLRP3/IL‑1β pathway in mice.","authors":"Xueru Liu, Guojing Shui, Yan Wang, Tangting Chen, Peng Zhang, Li Liu, Chunhong Li, Tao Li, Xiaobin Wang","doi":"10.3892/ijmm.2025.5498","DOIUrl":null,"url":null,"abstract":"<p><p>Remimazolam (Rema) is a novel anesthetic that is widely used in anesthesia and sedation in critically ill patients. Notably, Rema exerts effects in patients through activation of the γ‑aminobutyric acid (GABA) receptor. GABA may alleviate myocardial ischemia/reperfusion (I/R) injury; however, the impact of Rema and underlying molecular mechanism in myocardial I/R injury remain to be fully understood. Therefore, the present study aimed to investigate the effects of Rema on cardiac I/R injury and to determine the underlying mechanisms. An acute myocardial I/R model was established by ligating the left anterior descending artery in adult male C57BL/6 mice (8‑10 weeks). Cultured Raw264.7 cells treated with lipopolysaccharide (LPS) were also used to investigate the effect of Rema on macrophages. The results of the present study revealed that Rema improved I/R‑induced cardiac dysfunction by increasing the ejection fraction value and reducing the myocardial infarction area. In addition, Rema also alleviated I/R‑induced cardiac inflammatory cell infiltration based on H&E and immunofluorescence staining. Transmission electron microscopy and ROS measurements showed that Rema improved I/R‑induced mitochondrial structural disruption and oxidative stress in cardiomyocytes. Transcriptomics analysis and reverse transcription‑quantitative PCR revealed that Rema alleviated I/R‑induced release of inflammatory factors and cytokines by inhibiting the expression of IL‑1β, IL‑6, C‑C chemokine receptor 2 and C‑X‑C motif chemokine ligand 5. Rema also inhibited I/R‑induced CD68+ cell proliferation, IL‑1β release, and NOD‑like receptor thermal protein domain associated protein 3 (NLRP3) and IL‑1β expression. The results of <i>in vitro</i> assays revealed that Rema inhibited LPS‑induced increases in IL‑1β, IL‑6 and TNF‑α expression and release in cultured RAW264.7 macrophages. In conclusion, the present study revealed that Rema may alleviate I/R‑induced cardiac dysfunction and myocardial injury by inhibiting oxidative stress and inflammatory responses via the NLRP3/IL‑1β pathway.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 4","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2025.5498","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Remimazolam (Rema) is a novel anesthetic that is widely used in anesthesia and sedation in critically ill patients. Notably, Rema exerts effects in patients through activation of the γ‑aminobutyric acid (GABA) receptor. GABA may alleviate myocardial ischemia/reperfusion (I/R) injury; however, the impact of Rema and underlying molecular mechanism in myocardial I/R injury remain to be fully understood. Therefore, the present study aimed to investigate the effects of Rema on cardiac I/R injury and to determine the underlying mechanisms. An acute myocardial I/R model was established by ligating the left anterior descending artery in adult male C57BL/6 mice (8‑10 weeks). Cultured Raw264.7 cells treated with lipopolysaccharide (LPS) were also used to investigate the effect of Rema on macrophages. The results of the present study revealed that Rema improved I/R‑induced cardiac dysfunction by increasing the ejection fraction value and reducing the myocardial infarction area. In addition, Rema also alleviated I/R‑induced cardiac inflammatory cell infiltration based on H&E and immunofluorescence staining. Transmission electron microscopy and ROS measurements showed that Rema improved I/R‑induced mitochondrial structural disruption and oxidative stress in cardiomyocytes. Transcriptomics analysis and reverse transcription‑quantitative PCR revealed that Rema alleviated I/R‑induced release of inflammatory factors and cytokines by inhibiting the expression of IL‑1β, IL‑6, C‑C chemokine receptor 2 and C‑X‑C motif chemokine ligand 5. Rema also inhibited I/R‑induced CD68+ cell proliferation, IL‑1β release, and NOD‑like receptor thermal protein domain associated protein 3 (NLRP3) and IL‑1β expression. The results of in vitro assays revealed that Rema inhibited LPS‑induced increases in IL‑1β, IL‑6 and TNF‑α expression and release in cultured RAW264.7 macrophages. In conclusion, the present study revealed that Rema may alleviate I/R‑induced cardiac dysfunction and myocardial injury by inhibiting oxidative stress and inflammatory responses via the NLRP3/IL‑1β pathway.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of molecular medicine
International journal of molecular medicine 医学-医学:研究与实验
CiteScore
12.30
自引率
0.00%
发文量
124
审稿时长
3 months
期刊介绍: The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality. The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research. All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信