Determining the status of tertiary lymphoid structures in invasive pulmonary adenocarcinoma based on chest CT radiomic features.

IF 4.1 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Ye Yu, Tianshu Yang, Pengfei Ma, Yan Zeng, Yongming Dai, Yicheng Fu, Aie Liu, Ying Zhang, Guanglei Zhuang, Yan Zhou, Huawei Wu
{"title":"Determining the status of tertiary lymphoid structures in invasive pulmonary adenocarcinoma based on chest CT radiomic features.","authors":"Ye Yu, Tianshu Yang, Pengfei Ma, Yan Zeng, Yongming Dai, Yicheng Fu, Aie Liu, Ying Zhang, Guanglei Zhuang, Yan Zhou, Huawei Wu","doi":"10.1186/s13244-025-01906-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study was to determine the status of tertiary lymphoid structures (TLSs) using radiomic features in patients with invasive pulmonary adenocarcinoma (IA).</p><p><strong>Methods: </strong>In this retrospective study, patients with IA from November 2015 to March 2024 were recruited from two independent centers (center 1, training and internal test data set; center 2, external test data set). TLS was divided into two groups according to hematoxylin-eosin staining. Radiomic features were extracted, and support vector machine (SVM) were implemented to predict the status of TLSs. Receiver operating characteristic (ROC) curves were used to analyze diagnostic performance. Furthermore, visual assessments of the test set were also conducted by two thoracic radiologists and compared with the radiomics results.</p><p><strong>Results: </strong>A total of 456 patients were included (training data set, n = 278; internal test data set, n = 115; external test data set, n = 63). The area under the curve (AUC) of the radiomics model on the validation set, the internal test set, and the external test set were 0.781 (95% confidence interval (CI): 0.659-0.905;), 0.804 (95% CI: 0.723-0.884;) and 0.747 (95% CI: 0.621-0.874;), respectively. In the visual assessments, the mean CT value and air bronchogram were important indicators of TLS, the AUC was 0.683. In the external test set, the AUC of the clinical model was 0.632.</p><p><strong>Conclusions: </strong>The radiomics model has a higher AUC than the clinical model and effectively discriminates TLSs in patients with IA.</p><p><strong>Critical relevance statement: </strong>This study demonstrates that the radiomics-based model can differentiate TLSs in patients with IA. As a non-invasive biomarker, it enhances our understanding of tumor prognosis and management.</p><p><strong>Key points: </strong>TLSs are closely related to favorable clinical outcomes in non-small cell lung cancer. Radiomics from Chest CT predicted TLSs in patients with IA. This study supports individualized clinical decision-making for patients with IA.</p>","PeriodicalId":13639,"journal":{"name":"Insights into Imaging","volume":"16 1","pages":"28"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780022/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insights into Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13244-025-01906-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: The aim of this study was to determine the status of tertiary lymphoid structures (TLSs) using radiomic features in patients with invasive pulmonary adenocarcinoma (IA).

Methods: In this retrospective study, patients with IA from November 2015 to March 2024 were recruited from two independent centers (center 1, training and internal test data set; center 2, external test data set). TLS was divided into two groups according to hematoxylin-eosin staining. Radiomic features were extracted, and support vector machine (SVM) were implemented to predict the status of TLSs. Receiver operating characteristic (ROC) curves were used to analyze diagnostic performance. Furthermore, visual assessments of the test set were also conducted by two thoracic radiologists and compared with the radiomics results.

Results: A total of 456 patients were included (training data set, n = 278; internal test data set, n = 115; external test data set, n = 63). The area under the curve (AUC) of the radiomics model on the validation set, the internal test set, and the external test set were 0.781 (95% confidence interval (CI): 0.659-0.905;), 0.804 (95% CI: 0.723-0.884;) and 0.747 (95% CI: 0.621-0.874;), respectively. In the visual assessments, the mean CT value and air bronchogram were important indicators of TLS, the AUC was 0.683. In the external test set, the AUC of the clinical model was 0.632.

Conclusions: The radiomics model has a higher AUC than the clinical model and effectively discriminates TLSs in patients with IA.

Critical relevance statement: This study demonstrates that the radiomics-based model can differentiate TLSs in patients with IA. As a non-invasive biomarker, it enhances our understanding of tumor prognosis and management.

Key points: TLSs are closely related to favorable clinical outcomes in non-small cell lung cancer. Radiomics from Chest CT predicted TLSs in patients with IA. This study supports individualized clinical decision-making for patients with IA.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Insights into Imaging
Insights into Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
7.30
自引率
4.30%
发文量
182
审稿时长
13 weeks
期刊介绍: Insights into Imaging (I³) is a peer-reviewed open access journal published under the brand SpringerOpen. All content published in the journal is freely available online to anyone, anywhere! I³ continuously updates scientific knowledge and progress in best-practice standards in radiology through the publication of original articles and state-of-the-art reviews and opinions, along with recommendations and statements from the leading radiological societies in Europe. Founded by the European Society of Radiology (ESR), I³ creates a platform for educational material, guidelines and recommendations, and a forum for topics of controversy. A balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes I³ an indispensable source for current information in this field. I³ is owned by the ESR, however authors retain copyright to their article according to the Creative Commons Attribution License (see Copyright and License Agreement). All articles can be read, redistributed and reused for free, as long as the author of the original work is cited properly. The open access fees (article-processing charges) for this journal are kindly sponsored by ESR for all Members. The journal went open access in 2012, which means that all articles published since then are freely available online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信