{"title":"Exosome-mediated CRISPR/Cas delivery: A cutting-edge frontier in cancer gene therapy.","authors":"Bhavanisha Rithiga S, Rajib Dhar, Arikketh Devi","doi":"10.1016/j.gene.2025.149296","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is considered the second most common disease globally. In the past few decades, many approaches have been proposed for cancer treatment. One among those is targeted therapy using CRISPR-Cas system which plays an irreplaceable role in translational research through gene editing. However, due to its inability to cope with specific targeting, off-target effects, and limited tumor penetration, it is very challenging to use this approach in cancer studies. To increase its efficacy, CRISPR components are engineered into the extracellular vesicles (EVs), especially exosomes (a subpopulation of EVs). Exosomes have a significant role in cellular communication. Exosome-based CRISPR-Cas system transport for gene editing enhanced specificity, reduced off-target effects, and improved therapeutic potential. In this review, we highlighted the role of exosomes and the CRISPR-Cas system in cancer research, exosome-based CRISPR delivery for cancer treatment, and its future orientation.</p>","PeriodicalId":12499,"journal":{"name":"Gene","volume":" ","pages":"149296"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gene.2025.149296","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer is considered the second most common disease globally. In the past few decades, many approaches have been proposed for cancer treatment. One among those is targeted therapy using CRISPR-Cas system which plays an irreplaceable role in translational research through gene editing. However, due to its inability to cope with specific targeting, off-target effects, and limited tumor penetration, it is very challenging to use this approach in cancer studies. To increase its efficacy, CRISPR components are engineered into the extracellular vesicles (EVs), especially exosomes (a subpopulation of EVs). Exosomes have a significant role in cellular communication. Exosome-based CRISPR-Cas system transport for gene editing enhanced specificity, reduced off-target effects, and improved therapeutic potential. In this review, we highlighted the role of exosomes and the CRISPR-Cas system in cancer research, exosome-based CRISPR delivery for cancer treatment, and its future orientation.
期刊介绍:
Gene publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses.