Utilization of a human Liver Tissue Chip for drug-metabolizing enzyme induction studies of perpetrator and victim drugs.

IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Drug Metabolism and Disposition Pub Date : 2025-01-01 Epub Date: 2024-11-22 DOI:10.1124/dmd.124.001497
Shivam Ohri, Paarth Parekh, Lauren Nichols, Shiny Amala Priya Rajan, Murat Cirit
{"title":"Utilization of a human Liver Tissue Chip for drug-metabolizing enzyme induction studies of perpetrator and victim drugs.","authors":"Shivam Ohri, Paarth Parekh, Lauren Nichols, Shiny Amala Priya Rajan, Murat Cirit","doi":"10.1124/dmd.124.001497","DOIUrl":null,"url":null,"abstract":"<p><p>Polypharmacy-related drug-drug interactions (DDIs) are a significant and growing healthcare concern. An increasing number of therapeutic drugs on the market underscores the necessity to accurately assess new drug combinations during preclinical evaluation for DDIs. In vitro primary human hepatocytes (PHH) models are only applicable for short-term induction studies because of their rapid loss of metabolic function. Though coculturing nonhuman stromal cells with PHH has been shown to stabilize metabolic activity long-term, there are concerns about human specificity for accurate clinical assessment. In this study, we demonstrated a PHH-only liver microphysiological system in the Liver Tissue Chip is capable of maintaining long-term functional and metabolic activity of PHH from 3 individual donors and thus a suitable platform for long-term DDI induction studies. The responses to rifampicin induction of 3 PHH donors were assessed using cytochrome P450 activity and mRNA changes. Additionally, victim pharmacokinetic studies were conducted with midazolam (high clearance) and alprazolam (low clearance) following perpetrator drug treatment, rifampicin-mediated induction, which resulted in a 2-fold and a 2.6-fold increase in midazolam and alprazolam intrinsic clearance values, respectively, compared with the untreated liver microphysiological system. We also investigated the induction effects of different dosing regimens of the perpetrator drug (rifampicin) on cytochrome P450 activity levels, showing minimal variation in the intrinsic clearance of the victim drug (midazolam). This study illustrates the utility of the Liver Tissue Chip for in vitro liver-specific DDI induction studies, providing a translational experimental system to predict clinical clearance values of both perpetrator and victim drugs. SIGNIFICANCE STATEMENT: This study demonstrated the utility of the Liver Tissue Chip with a primary human hepatocyte-only liver microphysiological system for drug-drug interaction induction studies. This unique in vitro system with continuous recirculation maintains long-term functionality and metabolic activity for up to 4 weeks, enabling the study of perpetrator and victim drug pharmacokinetics, quantification of drug-induced cytochrome P450 mRNA and activity levels, investigation of patient variability, and ultimately clinical predictions.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":"53 1","pages":"100004"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Disposition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/dmd.124.001497","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Polypharmacy-related drug-drug interactions (DDIs) are a significant and growing healthcare concern. An increasing number of therapeutic drugs on the market underscores the necessity to accurately assess new drug combinations during preclinical evaluation for DDIs. In vitro primary human hepatocytes (PHH) models are only applicable for short-term induction studies because of their rapid loss of metabolic function. Though coculturing nonhuman stromal cells with PHH has been shown to stabilize metabolic activity long-term, there are concerns about human specificity for accurate clinical assessment. In this study, we demonstrated a PHH-only liver microphysiological system in the Liver Tissue Chip is capable of maintaining long-term functional and metabolic activity of PHH from 3 individual donors and thus a suitable platform for long-term DDI induction studies. The responses to rifampicin induction of 3 PHH donors were assessed using cytochrome P450 activity and mRNA changes. Additionally, victim pharmacokinetic studies were conducted with midazolam (high clearance) and alprazolam (low clearance) following perpetrator drug treatment, rifampicin-mediated induction, which resulted in a 2-fold and a 2.6-fold increase in midazolam and alprazolam intrinsic clearance values, respectively, compared with the untreated liver microphysiological system. We also investigated the induction effects of different dosing regimens of the perpetrator drug (rifampicin) on cytochrome P450 activity levels, showing minimal variation in the intrinsic clearance of the victim drug (midazolam). This study illustrates the utility of the Liver Tissue Chip for in vitro liver-specific DDI induction studies, providing a translational experimental system to predict clinical clearance values of both perpetrator and victim drugs. SIGNIFICANCE STATEMENT: This study demonstrated the utility of the Liver Tissue Chip with a primary human hepatocyte-only liver microphysiological system for drug-drug interaction induction studies. This unique in vitro system with continuous recirculation maintains long-term functionality and metabolic activity for up to 4 weeks, enabling the study of perpetrator and victim drug pharmacokinetics, quantification of drug-induced cytochrome P450 mRNA and activity levels, investigation of patient variability, and ultimately clinical predictions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
12.80%
发文量
128
审稿时长
3 months
期刊介绍: An important reference for all pharmacology and toxicology departments, DMD is also a valuable resource for medicinal chemists involved in drug design and biochemists with an interest in drug metabolism, expression of drug metabolizing enzymes, and regulation of drug metabolizing enzyme gene expression. Articles provide experimental results from in vitro and in vivo systems that bring you significant and original information on metabolism and disposition of endogenous and exogenous compounds, including pharmacologic agents and environmental chemicals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信