The absorption, distribution, metabolism and elimination characteristics of small interfering RNA therapeutics and the opportunity to predict disposition in pregnant women.

IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Drug Metabolism and Disposition Pub Date : 2025-01-01 Epub Date: 2024-11-22 DOI:10.1124/dmd.123.001383
Ogochukwu Amaeze, Nina Isoherranen, Sara Shum
{"title":"The absorption, distribution, metabolism and elimination characteristics of small interfering RNA therapeutics and the opportunity to predict disposition in pregnant women.","authors":"Ogochukwu Amaeze, Nina Isoherranen, Sara Shum","doi":"10.1124/dmd.123.001383","DOIUrl":null,"url":null,"abstract":"<p><p>Small interfering RNA (siRNA) therapeutics represent an emerging class of pharmacotherapy with the potential to address previously hard-to-treat diseases. Currently approved siRNA therapeutics include lipid nanoparticle-encapsulated siRNA and tri-N-acetylated galactosamine-conjugated siRNA. These siRNA therapeutics exhibit distinct pharmacokinetic characteristics and unique absorption, distribution, metabolism, and elimination (ADME) properties. As a new drug modality, limited clinical data are available for siRNA therapeutics in specific populations, including pediatrics, geriatrics, individuals with renal or hepatic impairment, and pregnant women, making dosing challenging. In this Minireview, a mechanistic overview of the ADME properties of the 5 currently approved siRNA therapeutics is presented. A concise overview of the clinical data available for therapeutic siRNAs in special populations, focusing on the potential impact of physiologic changes during pregnancy on siRNA disposition, is provided. The utility of physiologically based pharmacokinetic (PBPK) modeling as a tool to elucidate the characteristics and disposition of siRNA therapeutics in pregnant women is explored. Additionally, opportunities to integrate known physiologic alterations induced by pregnancy into PBPK models that incorporate siRNA ADME mechanisms to predict the effects of pregnancy on siRNA disposition are discussed. Clinical data regarding the use of therapeutic siRNA in special populations remain limited. Data for precise parameterization of maternal-fetal siRNA PBPK models are lacking presently and underscore the need for further research in this area. Addressing this gap in knowledge will not only enhance our understanding of siRNA pharmacokinetics during pregnancy but also advance the possible development of siRNA therapeutics to treat pregnancy-related conditions. SIGNIFICANCE STATEMENT: This Minireview proposes a framework on how small interfering RNA (siRNA) disposition can be predicted in pregnancy based on mechanistic absorption, distribution, metabolism, and elimination (ADME) information using physiologically-based pharmacokinetic (PBPK) modeling. The mechanistic ADME information and available clinical data in special populations of currently Food and Drug Administration-approved siRNA therapeutics are summarized. Additionally, how physiological changes during pregnancy may affect siRNA disposition is reviewed, and the opportunities to use PBPK modeling to predict siRNA disposition in pregnant women is explored.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":"53 1","pages":"100018"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Disposition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/dmd.123.001383","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Small interfering RNA (siRNA) therapeutics represent an emerging class of pharmacotherapy with the potential to address previously hard-to-treat diseases. Currently approved siRNA therapeutics include lipid nanoparticle-encapsulated siRNA and tri-N-acetylated galactosamine-conjugated siRNA. These siRNA therapeutics exhibit distinct pharmacokinetic characteristics and unique absorption, distribution, metabolism, and elimination (ADME) properties. As a new drug modality, limited clinical data are available for siRNA therapeutics in specific populations, including pediatrics, geriatrics, individuals with renal or hepatic impairment, and pregnant women, making dosing challenging. In this Minireview, a mechanistic overview of the ADME properties of the 5 currently approved siRNA therapeutics is presented. A concise overview of the clinical data available for therapeutic siRNAs in special populations, focusing on the potential impact of physiologic changes during pregnancy on siRNA disposition, is provided. The utility of physiologically based pharmacokinetic (PBPK) modeling as a tool to elucidate the characteristics and disposition of siRNA therapeutics in pregnant women is explored. Additionally, opportunities to integrate known physiologic alterations induced by pregnancy into PBPK models that incorporate siRNA ADME mechanisms to predict the effects of pregnancy on siRNA disposition are discussed. Clinical data regarding the use of therapeutic siRNA in special populations remain limited. Data for precise parameterization of maternal-fetal siRNA PBPK models are lacking presently and underscore the need for further research in this area. Addressing this gap in knowledge will not only enhance our understanding of siRNA pharmacokinetics during pregnancy but also advance the possible development of siRNA therapeutics to treat pregnancy-related conditions. SIGNIFICANCE STATEMENT: This Minireview proposes a framework on how small interfering RNA (siRNA) disposition can be predicted in pregnancy based on mechanistic absorption, distribution, metabolism, and elimination (ADME) information using physiologically-based pharmacokinetic (PBPK) modeling. The mechanistic ADME information and available clinical data in special populations of currently Food and Drug Administration-approved siRNA therapeutics are summarized. Additionally, how physiological changes during pregnancy may affect siRNA disposition is reviewed, and the opportunities to use PBPK modeling to predict siRNA disposition in pregnant women is explored.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
12.80%
发文量
128
审稿时长
3 months
期刊介绍: An important reference for all pharmacology and toxicology departments, DMD is also a valuable resource for medicinal chemists involved in drug design and biochemists with an interest in drug metabolism, expression of drug metabolizing enzymes, and regulation of drug metabolizing enzyme gene expression. Articles provide experimental results from in vitro and in vivo systems that bring you significant and original information on metabolism and disposition of endogenous and exogenous compounds, including pharmacologic agents and environmental chemicals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信