George F Cawley, J Patrick Connick, Marilyn K Eyer, Wayne L Backes
{"title":"Environmentally persistent free radicals stimulate CYP2E1-mediated generation of reactive oxygen species at the expense of substrate metabolism.","authors":"George F Cawley, J Patrick Connick, Marilyn K Eyer, Wayne L Backes","doi":"10.1124/dmd.124.001939","DOIUrl":null,"url":null,"abstract":"<p><p>Environmentally persistent free radicals (EPFRs) are a recently recognized component of particulate matter that cause respiratory and cardiovascular toxicity. The mechanism of EPFR toxicity appears to be related to their ability to generate reactive oxygen species (ROS), causing oxidative damage. EPFRs were shown to affect cytochrome P450 (P450) function, inducing the expression of some forms through the Ah receptor. However, another characteristic of EPFRs is their ability to inhibit P450 activities. CYP2E1 is one of the P450s that is inhibited by EPFR (MCP230, the laboratory-generated EPFR made by heating silica 5% copper oxide, and silica [<0.2 μm in diameter] and 2-monochlorophenol at ≥230 °C) exposure. Because CYP2E1 is also known to generate ROS, it is important to understand the ability of EPFRs to influence the function of this enzyme and to identify the mechanisms involved. CYP2E1 was shown to be inhibited by EPFRs and to a lesser extent by non-EPFR particles. Because EPFR-mediated inhibition was more robust at subsaturating NADPH-P450 reductase (POR) concentrations, disruption of POR•CYP2E1 complex formation and electron transfer were examined. Surprisingly, neither complex formation nor electron transfer between POR and CYP2E1 was inhibited by EPFRs. Examination of ROS production showed that MCP230 generated a greater amount of ROS than the non-EPFR control particle (CuO-Si). When a POR/CYP2E1-containing reconstituted system was added to the pollutant-particle systems, there was a synergistic stimulation of ROS production. The results indicate that EPFRs cause inhibition of CYP2E1-mediated substrate metabolism, yet do not alter electron transfer and actually stimulate ROS generation. Taken together, the results are consistent with EPFRs affecting CYP2E1 function by inhibiting substrate metabolism and increasing the generation of ROS. SIGNIFICANCE STATEMENT: Environmentally persistent free radicals affect CYP2E1 function by inhibition of monooxygenase activity. This inhibition is not due to disruption of the POR•CYP2E1 complex or inhibition of electron transfer but due to the uncoupling of NADPH and oxygen consumption from substrate metabolism to the generation of reactive oxygen species. These results show that environmentally persistent free radicals block the metabolism of foreign compounds and synergistically stimulate the formation of reactive oxygen species that lead to oxidative damage within the organism.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":"53 1","pages":"100012"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Disposition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/dmd.124.001939","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Environmentally persistent free radicals (EPFRs) are a recently recognized component of particulate matter that cause respiratory and cardiovascular toxicity. The mechanism of EPFR toxicity appears to be related to their ability to generate reactive oxygen species (ROS), causing oxidative damage. EPFRs were shown to affect cytochrome P450 (P450) function, inducing the expression of some forms through the Ah receptor. However, another characteristic of EPFRs is their ability to inhibit P450 activities. CYP2E1 is one of the P450s that is inhibited by EPFR (MCP230, the laboratory-generated EPFR made by heating silica 5% copper oxide, and silica [<0.2 μm in diameter] and 2-monochlorophenol at ≥230 °C) exposure. Because CYP2E1 is also known to generate ROS, it is important to understand the ability of EPFRs to influence the function of this enzyme and to identify the mechanisms involved. CYP2E1 was shown to be inhibited by EPFRs and to a lesser extent by non-EPFR particles. Because EPFR-mediated inhibition was more robust at subsaturating NADPH-P450 reductase (POR) concentrations, disruption of POR•CYP2E1 complex formation and electron transfer were examined. Surprisingly, neither complex formation nor electron transfer between POR and CYP2E1 was inhibited by EPFRs. Examination of ROS production showed that MCP230 generated a greater amount of ROS than the non-EPFR control particle (CuO-Si). When a POR/CYP2E1-containing reconstituted system was added to the pollutant-particle systems, there was a synergistic stimulation of ROS production. The results indicate that EPFRs cause inhibition of CYP2E1-mediated substrate metabolism, yet do not alter electron transfer and actually stimulate ROS generation. Taken together, the results are consistent with EPFRs affecting CYP2E1 function by inhibiting substrate metabolism and increasing the generation of ROS. SIGNIFICANCE STATEMENT: Environmentally persistent free radicals affect CYP2E1 function by inhibition of monooxygenase activity. This inhibition is not due to disruption of the POR•CYP2E1 complex or inhibition of electron transfer but due to the uncoupling of NADPH and oxygen consumption from substrate metabolism to the generation of reactive oxygen species. These results show that environmentally persistent free radicals block the metabolism of foreign compounds and synergistically stimulate the formation of reactive oxygen species that lead to oxidative damage within the organism.
期刊介绍:
An important reference for all pharmacology and toxicology departments, DMD is also a valuable resource for medicinal chemists involved in drug design and biochemists with an interest in drug metabolism, expression of drug metabolizing enzymes, and regulation of drug metabolizing enzyme gene expression. Articles provide experimental results from in vitro and in vivo systems that bring you significant and original information on metabolism and disposition of endogenous and exogenous compounds, including pharmacologic agents and environmental chemicals.