{"title":"FOXP3 as a prognostic marker and therapeutic target in immunogenic cell death modulation for clear cell renal cell carcinoma.","authors":"Jian Chen, Cheng Zhu, Yan He, Liping Huang, Weizhuo Wang, Shuaishuai Huang","doi":"10.1007/s12672-025-01831-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Clear cell renal cell carcinoma (ccRCC) remains a challenging cancer type due to its resistance to standard treatments. Immunogenic cell death (ICD) has the potential to activate anti-tumor immunity, presenting a promising avenue for ccRCC therapies.</p><p><strong>Methods: </strong>We analyzed data from GSE29609, TCGA-KIRC, and GSE159115 to identify ICD-related prognostic genes in ccRCC. By applying consensus clustering, patients were categorized based on ICD modification patterns, and an ICD signature (ICDS) model was developed using a PCA approach. Functional studies were conducted with FOXP3 knockdown in ccRCC cell lines to explore its impact on cell behavior.</p><p><strong>Results: </strong>Eleven ICD-related genes were identified as key prognostic indicators in ccRCC, with high ICDS linked to worse survival outcomes. High ICDS also correlated with increased levels of immune-suppressive cells within the tumor microenvironment. FOXP3 was highlighted as a critical gene influencing ICD, where its knockdown significantly reduced ccRCC cell proliferation and migration, underscoring its role in tumor progression.</p><p><strong>Conclusions: </strong>This study establishes FOXP3 as a pivotal factor in ICD regulation and ccRCC progression. Targeting FOXP3 and other ICD pathways could enhance treatment efficacy in ccRCC, providing a foundation for ICD-based therapeutic strategies. Evaluating ICD patterns in ccRCC may guide patient-specific interventions, paving the way for improved management of this aggressive cancer.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"102"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782763/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-01831-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) remains a challenging cancer type due to its resistance to standard treatments. Immunogenic cell death (ICD) has the potential to activate anti-tumor immunity, presenting a promising avenue for ccRCC therapies.
Methods: We analyzed data from GSE29609, TCGA-KIRC, and GSE159115 to identify ICD-related prognostic genes in ccRCC. By applying consensus clustering, patients were categorized based on ICD modification patterns, and an ICD signature (ICDS) model was developed using a PCA approach. Functional studies were conducted with FOXP3 knockdown in ccRCC cell lines to explore its impact on cell behavior.
Results: Eleven ICD-related genes were identified as key prognostic indicators in ccRCC, with high ICDS linked to worse survival outcomes. High ICDS also correlated with increased levels of immune-suppressive cells within the tumor microenvironment. FOXP3 was highlighted as a critical gene influencing ICD, where its knockdown significantly reduced ccRCC cell proliferation and migration, underscoring its role in tumor progression.
Conclusions: This study establishes FOXP3 as a pivotal factor in ICD regulation and ccRCC progression. Targeting FOXP3 and other ICD pathways could enhance treatment efficacy in ccRCC, providing a foundation for ICD-based therapeutic strategies. Evaluating ICD patterns in ccRCC may guide patient-specific interventions, paving the way for improved management of this aggressive cancer.