AI-driven multi-omics integration for multi-scale predictive modeling of genotype-environment-phenotype relationships

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
You Wu , Lei Xie
{"title":"AI-driven multi-omics integration for multi-scale predictive modeling of genotype-environment-phenotype relationships","authors":"You Wu ,&nbsp;Lei Xie","doi":"10.1016/j.csbj.2024.12.030","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the wealth of single-cell multi-omics data, it remains challenging to predict the consequences of novel genetic and chemical perturbations in the human body. It requires knowledge of molecular interactions at all biological levels, encompassing disease models and humans. Current machine learning methods primarily establish statistical correlations between genotypes and phenotypes but struggle to identify physiologically significant causal factors, limiting their predictive power. Key challenges in predictive modeling include scarcity of labeled data, generalization across different domains, and disentangling causation from correlation. In light of recent advances in multi-omics data integration, we propose a new artificial intelligence (AI)-powered biology-inspired multi-scale modeling framework to tackle these issues. This framework will integrate multi-omics data across biological levels, organism hierarchies, and species to predict genotype-environment-phenotype relationships under various conditions. AI models inspired by biology may identify novel molecular targets, biomarkers, pharmaceutical agents, and personalized medicines for presently unmet medical needs.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 265-277"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11779603/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037024004513","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the wealth of single-cell multi-omics data, it remains challenging to predict the consequences of novel genetic and chemical perturbations in the human body. It requires knowledge of molecular interactions at all biological levels, encompassing disease models and humans. Current machine learning methods primarily establish statistical correlations between genotypes and phenotypes but struggle to identify physiologically significant causal factors, limiting their predictive power. Key challenges in predictive modeling include scarcity of labeled data, generalization across different domains, and disentangling causation from correlation. In light of recent advances in multi-omics data integration, we propose a new artificial intelligence (AI)-powered biology-inspired multi-scale modeling framework to tackle these issues. This framework will integrate multi-omics data across biological levels, organism hierarchies, and species to predict genotype-environment-phenotype relationships under various conditions. AI models inspired by biology may identify novel molecular targets, biomarkers, pharmaceutical agents, and personalized medicines for presently unmet medical needs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信