Hyunwoo Ju, Il-Doo Kim, Ina Pavlova, Shang Mu, Keun Woo Park, Joseph Minkler, Ahmed Madkoor, Wei Wang, Xiaoman Wang, Zhuhao Wu, Jiwon Yang, Maria Febbraio, John W Cave, Sunghee Cho
{"title":"Remote Ischemic Conditioning Attenuates Transneuronal Degeneration and Promotes Stroke Recovery via CD36-Mediated Efferocytosis.","authors":"Hyunwoo Ju, Il-Doo Kim, Ina Pavlova, Shang Mu, Keun Woo Park, Joseph Minkler, Ahmed Madkoor, Wei Wang, Xiaoman Wang, Zhuhao Wu, Jiwon Yang, Maria Febbraio, John W Cave, Sunghee Cho","doi":"10.1161/CIRCRESAHA.124.325428","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Remote ischemic conditioning (RIC) has been implicated in cross-organ protection in cerebrovascular disease, including stroke. However, the lack of a consensus protocol and controversy over the clinical therapeutic outcomes of RIC suggest an inadequate mechanistic understanding of RIC. The current study identifies RIC-induced molecular and cellular events in the blood, which enhance long-term functional recovery in experimental cerebral ischemia.</p><p><strong>Methods: </strong>Naive mice or mice subjected to transient ischemic stroke were randomly selected to receive sham conditioning or RIC in the hindlimb at 2 hours post-stroke. At 3 days post-stroke, monocyte composition in the blood was analyzed, and brain tissue was examined for monocyte-derived macrophage (Mφ), levels of efferocytosis, and CD36 expression. Mouse with a specific deletion of CD36 in monocytes/Mφs was used to establish the role of CD36 in RIC-mediated modulation of efferocytosis, transneuronal degeneration, and recovery following stroke.</p><p><strong>Results: </strong>RIC applied 2 hours after stroke increased the entry of monocytes into the injured brain. In the postischemic brain, Mφ had increased levels of CD36 expression and efferocytosis. These changes in brain Mφ were derived from RIC-induced changes in circulating monocytes. In the blood, RIC increased CD36 expression in circulating monocytes and shifted monocytes to a proinflammatory LY6C<sup>High</sup> state. Conditional deletion of CD36 in Mφ abrogated the RIC-induced monocyte shift in the blood and efferocytosis in the brain. During the recovery phase of stroke, RIC rescued the loss of the volume and of tyrosine hydroxylase+ neurons in substantia nigra and behavioral deficits in wild-type mice but not in mice with a specific deletion of CD36 in monocytes/Mφs.</p><p><strong>Conclusions: </strong>RIC induces a shift in monocytes to a proinflammatory state with elevated CD36 levels, and this is associated with CD36-dependent efferocytosis in Mφs that rescues delayed transneuronal degeneration in the postischemic brain and promotes stroke recovery. Together, these findings provide novel insight into our mechanistic understanding of how RIC improves poststroke recovery.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":""},"PeriodicalIF":16.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.325428","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Remote ischemic conditioning (RIC) has been implicated in cross-organ protection in cerebrovascular disease, including stroke. However, the lack of a consensus protocol and controversy over the clinical therapeutic outcomes of RIC suggest an inadequate mechanistic understanding of RIC. The current study identifies RIC-induced molecular and cellular events in the blood, which enhance long-term functional recovery in experimental cerebral ischemia.
Methods: Naive mice or mice subjected to transient ischemic stroke were randomly selected to receive sham conditioning or RIC in the hindlimb at 2 hours post-stroke. At 3 days post-stroke, monocyte composition in the blood was analyzed, and brain tissue was examined for monocyte-derived macrophage (Mφ), levels of efferocytosis, and CD36 expression. Mouse with a specific deletion of CD36 in monocytes/Mφs was used to establish the role of CD36 in RIC-mediated modulation of efferocytosis, transneuronal degeneration, and recovery following stroke.
Results: RIC applied 2 hours after stroke increased the entry of monocytes into the injured brain. In the postischemic brain, Mφ had increased levels of CD36 expression and efferocytosis. These changes in brain Mφ were derived from RIC-induced changes in circulating monocytes. In the blood, RIC increased CD36 expression in circulating monocytes and shifted monocytes to a proinflammatory LY6CHigh state. Conditional deletion of CD36 in Mφ abrogated the RIC-induced monocyte shift in the blood and efferocytosis in the brain. During the recovery phase of stroke, RIC rescued the loss of the volume and of tyrosine hydroxylase+ neurons in substantia nigra and behavioral deficits in wild-type mice but not in mice with a specific deletion of CD36 in monocytes/Mφs.
Conclusions: RIC induces a shift in monocytes to a proinflammatory state with elevated CD36 levels, and this is associated with CD36-dependent efferocytosis in Mφs that rescues delayed transneuronal degeneration in the postischemic brain and promotes stroke recovery. Together, these findings provide novel insight into our mechanistic understanding of how RIC improves poststroke recovery.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.