{"title":"Synergistic Enhancement of Radio-immunotherapy Efficacy by IL-15 via Macrophage Activation and Memory T Cell Response.","authors":"Peng Jin, Menglin Bai, Ji Li, Wenxiao Jia, Jinming Yu, Xue Meng","doi":"10.1016/j.canlet.2025.217511","DOIUrl":null,"url":null,"abstract":"<p><p>Successful immunotherapy requires systemic activation of the immune system. Radio-immunotherapy has a synergistic effect, enhancing this activation, but still faces many challenges, requiring methods to further improve its efficacy. Interleukin 15 (IL-15) is considered a potential therapeutic agent because of its broad immunoregulatory activity. This study found that in various tumor-bearing mouse models, systemic immune activation mediated by memory T cells in secondary lymphoid organs was crucial after radio-immunotherapy and IL-15 played a key role in this process. Radio-immunotherapy stimulated the expression of IL-15Rα on macrophages in the tumor microenvironment. When macrophages were depleted, the IL-15 levels in the tumor microenvironment and spleen tissues significantly decreased. Co-culture models confirmed that radio-immunotherapy enhanced the anti-tumor immune response by activating macrophages to secrete IL-15. Applying IL-15 significantly enhances the effects of radio-immunotherapy, stimulating systemic immune activation and providing long-term memory effects and tumor protection. Under co-culture conditions, IL-15 combined with radio-immunotherapy stimulated the proliferation of CD8+ T cells, secretion of IFN-γ and TNF-α, and secretion of chemokines by macrophages, especially CCL5, increasing the recruitment of effector T cells and enhancing the immune response. The synergistic effect of IL-15 and radio-immunotherapy was macrophage-dependent. Our study revealed the mechanism of IL-15 in systemic immune activation after radio-immunotherapy and explored the potential use of IL-15 to enhance the efficacy of radio-immunotherapy, providing new avenues for future treatment strategies.</p>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":" ","pages":"217511"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.canlet.2025.217511","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Successful immunotherapy requires systemic activation of the immune system. Radio-immunotherapy has a synergistic effect, enhancing this activation, but still faces many challenges, requiring methods to further improve its efficacy. Interleukin 15 (IL-15) is considered a potential therapeutic agent because of its broad immunoregulatory activity. This study found that in various tumor-bearing mouse models, systemic immune activation mediated by memory T cells in secondary lymphoid organs was crucial after radio-immunotherapy and IL-15 played a key role in this process. Radio-immunotherapy stimulated the expression of IL-15Rα on macrophages in the tumor microenvironment. When macrophages were depleted, the IL-15 levels in the tumor microenvironment and spleen tissues significantly decreased. Co-culture models confirmed that radio-immunotherapy enhanced the anti-tumor immune response by activating macrophages to secrete IL-15. Applying IL-15 significantly enhances the effects of radio-immunotherapy, stimulating systemic immune activation and providing long-term memory effects and tumor protection. Under co-culture conditions, IL-15 combined with radio-immunotherapy stimulated the proliferation of CD8+ T cells, secretion of IFN-γ and TNF-α, and secretion of chemokines by macrophages, especially CCL5, increasing the recruitment of effector T cells and enhancing the immune response. The synergistic effect of IL-15 and radio-immunotherapy was macrophage-dependent. Our study revealed the mechanism of IL-15 in systemic immune activation after radio-immunotherapy and explored the potential use of IL-15 to enhance the efficacy of radio-immunotherapy, providing new avenues for future treatment strategies.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.