Sanna Darvish, Kevin O Murray, Katelyn R Ludwig, Krisha H Avalani, Daniel H Craighead, Kaitlin A Freeberg, Shaun Bevers, Julie A Reisz, Angelo D'Alessandro, Kerrie L Moreau, Douglas R Seals, Matthew J Rossman
{"title":"Preservation of Vascular Endothelial Function in Late-Onset Postmenopausal Women.","authors":"Sanna Darvish, Kevin O Murray, Katelyn R Ludwig, Krisha H Avalani, Daniel H Craighead, Kaitlin A Freeberg, Shaun Bevers, Julie A Reisz, Angelo D'Alessandro, Kerrie L Moreau, Douglas R Seals, Matthew J Rossman","doi":"10.1161/CIRCRESAHA.124.325639","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Postmenopausal women (PMW) who complete menopause at a late age (55+ years) have lower cardiovascular disease risk than PMW who complete menopause at a normal age (45-54 years). However, the influence of late-onset menopause on vascular endothelial dysfunction is unknown. Moreover, the mechanisms by which a later age at menopause may modulate endothelial function remain to be determined.</p><p><strong>Methods: </strong>We measured endothelial function (brachial artery flow-mediated dilation [FMD<sub>BA</sub>]) in age-matched late- and normal-onset PMW and a young premenopausal reference group. We determined mitochondrial reactive oxygen species (mitoROS)-related suppression of endothelial function (change in FMD<sub>BA</sub> with an acute dose of the mitochondria-targeted antioxidant MitoQ; ΔFMD<sub>BA, MTQ</sub>) in PMW. The effects of serum from late- and normal-onset PMW and premenopausal women on mitoROS bioactivity in human aortic endothelial cells in culture were assessed. Metabolomics analyses in combination with serum metabolite level normalization and human aortic endothelial cell serum exposure experiments were performed to identify the circulating factors contributing to the serum effects on endothelial cell mitoROS bioactivity.</p><p><strong>Results: </strong>FMD<sub>BA</sub> in PMW was lower than in premenopausal women. However, FMD<sub>BA</sub> was >50% higher in late- versus normal-onset PMW and positively related to age at menopause. ΔFMD<sub>BA, MTQ</sub> was >50% lower in late- versus normal-onset PMW. Serum from normal-onset PMW but not late-onset PMW induced higher mitoROS bioactivity in human aortic endothelial cells compared with serum from premenopausal women. mitoROS bioactivity was negatively related to FMD<sub>BA</sub> and age at menopause. Seventeen metabolites significantly differed between late- and normal-onset PMW; 15 were lipid specific; 8 were triglyceride derived. TG(16:0) was most strongly correlated with mitoROS bioactivity. Normalization of TG(16:0) concentrations in serum from premenopausal women and late-onset PMW to match serum levels in normal-onset PMW abrogated differences in mitoROS bioactivity in serum-treated human aortic endothelial cells.</p><p><strong>Conclusions: </strong>Late-onset menopause is associated with preservation of endothelial function, which is mediated by lower mitoROS-associated oxidative stress. A more favorable profile of circulating lipid metabolites, specifically triglyceride-derived metabolites, contributes to lower endothelial cell mitoROS in late-onset PMW. These findings provide new insight into the possible mechanisms of reduced cardiovascular disease risk in late-onset menopause.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":""},"PeriodicalIF":16.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.325639","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Postmenopausal women (PMW) who complete menopause at a late age (55+ years) have lower cardiovascular disease risk than PMW who complete menopause at a normal age (45-54 years). However, the influence of late-onset menopause on vascular endothelial dysfunction is unknown. Moreover, the mechanisms by which a later age at menopause may modulate endothelial function remain to be determined.
Methods: We measured endothelial function (brachial artery flow-mediated dilation [FMDBA]) in age-matched late- and normal-onset PMW and a young premenopausal reference group. We determined mitochondrial reactive oxygen species (mitoROS)-related suppression of endothelial function (change in FMDBA with an acute dose of the mitochondria-targeted antioxidant MitoQ; ΔFMDBA, MTQ) in PMW. The effects of serum from late- and normal-onset PMW and premenopausal women on mitoROS bioactivity in human aortic endothelial cells in culture were assessed. Metabolomics analyses in combination with serum metabolite level normalization and human aortic endothelial cell serum exposure experiments were performed to identify the circulating factors contributing to the serum effects on endothelial cell mitoROS bioactivity.
Results: FMDBA in PMW was lower than in premenopausal women. However, FMDBA was >50% higher in late- versus normal-onset PMW and positively related to age at menopause. ΔFMDBA, MTQ was >50% lower in late- versus normal-onset PMW. Serum from normal-onset PMW but not late-onset PMW induced higher mitoROS bioactivity in human aortic endothelial cells compared with serum from premenopausal women. mitoROS bioactivity was negatively related to FMDBA and age at menopause. Seventeen metabolites significantly differed between late- and normal-onset PMW; 15 were lipid specific; 8 were triglyceride derived. TG(16:0) was most strongly correlated with mitoROS bioactivity. Normalization of TG(16:0) concentrations in serum from premenopausal women and late-onset PMW to match serum levels in normal-onset PMW abrogated differences in mitoROS bioactivity in serum-treated human aortic endothelial cells.
Conclusions: Late-onset menopause is associated with preservation of endothelial function, which is mediated by lower mitoROS-associated oxidative stress. A more favorable profile of circulating lipid metabolites, specifically triglyceride-derived metabolites, contributes to lower endothelial cell mitoROS in late-onset PMW. These findings provide new insight into the possible mechanisms of reduced cardiovascular disease risk in late-onset menopause.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.