Michael J Buckenmeyer, Elizabeth A Brooks, Madison S Taylor, Ireolu K Orenuga, Liping Yang, Ronald J Holewinski, Thomas J Meyer, Melissa Galloux, Marcial Garmendia-Cedillos, Thomas J Pohida, Thorkell Andresson, Brad St Croix, Matthew T Wolf
{"title":"A 3D Self-Assembly Platform Integrating Decellularized Matrix Recapitulates In Vivo Tumor Phenotypes and Heterogeneity.","authors":"Michael J Buckenmeyer, Elizabeth A Brooks, Madison S Taylor, Ireolu K Orenuga, Liping Yang, Ronald J Holewinski, Thomas J Meyer, Melissa Galloux, Marcial Garmendia-Cedillos, Thomas J Pohida, Thorkell Andresson, Brad St Croix, Matthew T Wolf","doi":"10.1158/0008-5472.CAN-24-1954","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) in vitro cell culture models are invaluable tools for investigating the tumor microenvironment. However, analyzing the impact of critical stromal elements, such as extracellular matrix (ECM), remains a challenge. In this study, we developed a hydrogel-free self-assembly platform to establish ECM-rich 3D \"MatriSpheres\" to deconvolute cancer cell-ECM interactions. Mouse and human colorectal cancer MatriSpheres actively incorporated microgram quantities of decellularized small intestine submucosa ECM, which proteomically mimicked colorectal cancer tumor ECM compared with traditional formulations like Matrigel. Solubilized ECM, at subgelation concentrations, was organized by colorectal cancer cells into intercellular stroma-like regions within 5 days, displaying morphologic similarity to colorectal cancer clinical pathology. MatriSpheres featured ECM-dependent transcriptional and cytokine profiles associated with malignancy, lipid metabolism, and immunoregulation. Model benchmarking with single-cell RNA sequencing demonstrated that MatriSpheres enhanced correlation with in vivo tumor cells over traditional ECM-poor spheroids. This facile approach enables tumor-specific tissue morphogenesis, promoting cell-ECM communication to improve fidelity for disease modeling applications. Significance: MatriSpheres provide a hydrogel-free 3D platform for decoupling the influence of heterogeneous extracellular matrix components on tumor biology and can broadly facilitate high-throughput drug discovery and screening applications. See related commentary by Ernst and De Wever, p. 1568.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"1577-1595"},"PeriodicalIF":12.5000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048290/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-24-1954","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional (3D) in vitro cell culture models are invaluable tools for investigating the tumor microenvironment. However, analyzing the impact of critical stromal elements, such as extracellular matrix (ECM), remains a challenge. In this study, we developed a hydrogel-free self-assembly platform to establish ECM-rich 3D "MatriSpheres" to deconvolute cancer cell-ECM interactions. Mouse and human colorectal cancer MatriSpheres actively incorporated microgram quantities of decellularized small intestine submucosa ECM, which proteomically mimicked colorectal cancer tumor ECM compared with traditional formulations like Matrigel. Solubilized ECM, at subgelation concentrations, was organized by colorectal cancer cells into intercellular stroma-like regions within 5 days, displaying morphologic similarity to colorectal cancer clinical pathology. MatriSpheres featured ECM-dependent transcriptional and cytokine profiles associated with malignancy, lipid metabolism, and immunoregulation. Model benchmarking with single-cell RNA sequencing demonstrated that MatriSpheres enhanced correlation with in vivo tumor cells over traditional ECM-poor spheroids. This facile approach enables tumor-specific tissue morphogenesis, promoting cell-ECM communication to improve fidelity for disease modeling applications. Significance: MatriSpheres provide a hydrogel-free 3D platform for decoupling the influence of heterogeneous extracellular matrix components on tumor biology and can broadly facilitate high-throughput drug discovery and screening applications. See related commentary by Ernst and De Wever, p. 1568.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.