Vitamin D3/VDR alleviates double-stranded RNA virus -induced biliary epithelial cell damage by inhibiting autophagy.

IF 2.5 3区 医学 Q2 GASTROENTEROLOGY & HEPATOLOGY
Na Liu, Pu Zhao, Ping Cao, JunPeng Hui, YongKang Pan, Jiwen Cheng
{"title":"Vitamin D3/VDR alleviates double-stranded RNA virus -induced biliary epithelial cell damage by inhibiting autophagy.","authors":"Na Liu, Pu Zhao, Ping Cao, JunPeng Hui, YongKang Pan, Jiwen Cheng","doi":"10.1186/s12876-025-03640-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The increased apoptosis of bile duct epithelial cells (BECs) due to some damage factors is considered the initiating factor in the occurrence and progression of biliary atresia (BA). Vitamin D receptor (VDR) is thought to play a crucial role in maintaining the intrinsic immune balance and integrity of bile duct epithelial cells (BECs). To investigate the role of VDRs in the pathogenesis and progression of BA using in vitro and in vivo models.</p><p><strong>Materials and methods: </strong>The VDR expression levels in intrahepatic bile duct epithelial cells (IBDECs) in pediatric patients with BA were examined using immunohistochemical analysis. The correlation of the VDR levels with the incidence of refractory cholangitis after Kasai portoenterostomy (KPE) and the autologous liver survival time was analyzed. The levels of genes and proteins involved in related pathways were examined using quantitative real-time polymerase chain reaction and western blotting, respectively. The secretory levels of inflammatory factors were analyzed using enzyme-linked immunosorbent assay. A BA mouse model was established through the intraperitoneal sequential injection of rhesus rotavirus (RRV). The role of VDR in the pathogenesis and progression of BA was examined using in vitro and in vivo models. Retrospective analysis of patients with BA to examine the therapeutic efficacy of VDR activators on BA.</p><p><strong>Results: </strong>15 pediatric BA patients exhibiting VDR downregulation in IBDECs showed a higher incidence of refractory cholangitis after Kasai portoenterostomy (p = 0.037) and a lower native liver survival time compare to 23 BA patients without VDR downregulation (p = 0.032). 1,25-VD3 inhibited the degree of autophagy induction in HIBECs by poly(I: C) (p < 0.05), mitigated poly(I: C)-induced BEC damage and apoptosis by inhibiting autophagy (p < 0.05). 1,25-VD3 significantly suppressed the poly(I: C)-induced downregulation of SRC (p < 0.05) and ERK1/2 phosphorylation (p < 0.05). 1,25-VD3 exert a protective effect against RRV-induced BEC damage by inhibiting autophagy in BA mouse model. The incidence of cholangitis and the native liver survival time after surgery in the calcitriol-treated group was significantly lower than that in the control group. (p = 0.033, p = 0.035, respectively).</p><p><strong>Conclusions: </strong>VDR activator mitigated dsRNA-induced BEC damage and apoptosis by inhibiting autophagy in vitro and in vivo. The 1,25-VD3/VDR/Src axis alleviated poly(I: C)-induced HIBEC damage and apoptosis through the PLA2/PKC/ERK pathway.</p>","PeriodicalId":9129,"journal":{"name":"BMC Gastroenterology","volume":"25 1","pages":"44"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780797/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12876-025-03640-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The increased apoptosis of bile duct epithelial cells (BECs) due to some damage factors is considered the initiating factor in the occurrence and progression of biliary atresia (BA). Vitamin D receptor (VDR) is thought to play a crucial role in maintaining the intrinsic immune balance and integrity of bile duct epithelial cells (BECs). To investigate the role of VDRs in the pathogenesis and progression of BA using in vitro and in vivo models.

Materials and methods: The VDR expression levels in intrahepatic bile duct epithelial cells (IBDECs) in pediatric patients with BA were examined using immunohistochemical analysis. The correlation of the VDR levels with the incidence of refractory cholangitis after Kasai portoenterostomy (KPE) and the autologous liver survival time was analyzed. The levels of genes and proteins involved in related pathways were examined using quantitative real-time polymerase chain reaction and western blotting, respectively. The secretory levels of inflammatory factors were analyzed using enzyme-linked immunosorbent assay. A BA mouse model was established through the intraperitoneal sequential injection of rhesus rotavirus (RRV). The role of VDR in the pathogenesis and progression of BA was examined using in vitro and in vivo models. Retrospective analysis of patients with BA to examine the therapeutic efficacy of VDR activators on BA.

Results: 15 pediatric BA patients exhibiting VDR downregulation in IBDECs showed a higher incidence of refractory cholangitis after Kasai portoenterostomy (p = 0.037) and a lower native liver survival time compare to 23 BA patients without VDR downregulation (p = 0.032). 1,25-VD3 inhibited the degree of autophagy induction in HIBECs by poly(I: C) (p < 0.05), mitigated poly(I: C)-induced BEC damage and apoptosis by inhibiting autophagy (p < 0.05). 1,25-VD3 significantly suppressed the poly(I: C)-induced downregulation of SRC (p < 0.05) and ERK1/2 phosphorylation (p < 0.05). 1,25-VD3 exert a protective effect against RRV-induced BEC damage by inhibiting autophagy in BA mouse model. The incidence of cholangitis and the native liver survival time after surgery in the calcitriol-treated group was significantly lower than that in the control group. (p = 0.033, p = 0.035, respectively).

Conclusions: VDR activator mitigated dsRNA-induced BEC damage and apoptosis by inhibiting autophagy in vitro and in vivo. The 1,25-VD3/VDR/Src axis alleviated poly(I: C)-induced HIBEC damage and apoptosis through the PLA2/PKC/ERK pathway.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Gastroenterology
BMC Gastroenterology 医学-胃肠肝病学
CiteScore
4.20
自引率
0.00%
发文量
465
审稿时长
6 months
期刊介绍: BMC Gastroenterology is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of gastrointestinal and hepatobiliary disorders, as well as related molecular genetics, pathophysiology, and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信