Inhibition of hydrogen peroxide-induced senescence markers by yeast-derived vacuoles in human lung fibroblasts

IF 4.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Su-Min Lee , Eunsu Seo , Yang-Hoon Kim , Jiho Min
{"title":"Inhibition of hydrogen peroxide-induced senescence markers by yeast-derived vacuoles in human lung fibroblasts","authors":"Su-Min Lee ,&nbsp;Eunsu Seo ,&nbsp;Yang-Hoon Kim ,&nbsp;Jiho Min","doi":"10.1016/j.bbamcr.2025.119907","DOIUrl":null,"url":null,"abstract":"<div><div>Senescence significantly contributes to aging in various tissues, influenced by factors such as lysosomal alkalinization, which disrupts autophagic flux and accumulates toxic substances. This disruption leads to oxidative stress, increased lysosomal permeability, cellular senescence, and apoptosis. Similar to mammalian lysosomes, <em>S. cerevisiae</em>-derived vacuoles degrade macromolecules using hydrolytic enzymes and mitigate these aging effects. Our study assessed the anti-aging potential of yeast vacuoles in human lung fibroblasts treated with hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). Pretreatment with vacuoles at concentrations of 1, 5, and 10 μg/ml decreased SA-β-gal-positive cell counts, reduced mRNA levels of senescence markers (p21 and p53), and senescence-associated secretory phenotype (SASP) factors (IL-6 and TNF-α) compared to controls treated with H<sub>2</sub>O<sub>2</sub> alone. Additionally, these vacuoles significantly diminished intracellular reactive oxygen species (ROS) levels, indicating their potential as effective lung anti-senescence agents. This study suggests that yeast vacuoles could be used as a preventive measure against changes associated with lung aging.</div></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1872 3","pages":"Article 119907"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488925000126","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Senescence significantly contributes to aging in various tissues, influenced by factors such as lysosomal alkalinization, which disrupts autophagic flux and accumulates toxic substances. This disruption leads to oxidative stress, increased lysosomal permeability, cellular senescence, and apoptosis. Similar to mammalian lysosomes, S. cerevisiae-derived vacuoles degrade macromolecules using hydrolytic enzymes and mitigate these aging effects. Our study assessed the anti-aging potential of yeast vacuoles in human lung fibroblasts treated with hydrogen peroxide (H2O2). Pretreatment with vacuoles at concentrations of 1, 5, and 10 μg/ml decreased SA-β-gal-positive cell counts, reduced mRNA levels of senescence markers (p21 and p53), and senescence-associated secretory phenotype (SASP) factors (IL-6 and TNF-α) compared to controls treated with H2O2 alone. Additionally, these vacuoles significantly diminished intracellular reactive oxygen species (ROS) levels, indicating their potential as effective lung anti-senescence agents. This study suggests that yeast vacuoles could be used as a preventive measure against changes associated with lung aging.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.00
自引率
2.00%
发文量
151
审稿时长
44 days
期刊介绍: BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信