A comparison of different machine learning classifiers in predicting xerostomia and sticky saliva due to head and neck radiotherapy using a multi-objective, multimodal radiomics model.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Benyamin Khajetash, Ghasem Hajianfar, Amin Talebi, Beth Ghavidel, Seied Rabi Mahdavi, Yang Lei, Meysam Tavakoli
{"title":"A comparison of different machine learning classifiers in predicting xerostomia and sticky saliva due to head and neck radiotherapy using a multi-objective, multimodal radiomics model.","authors":"Benyamin Khajetash, Ghasem Hajianfar, Amin Talebi, Beth Ghavidel, Seied Rabi Mahdavi, Yang Lei, Meysam Tavakoli","doi":"10.1088/2057-1976/adafac","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background and Purpose</i>. Although radiotherapy techniques are a primary treatment for head and neck cancer (HNC), they are still associated with substantial toxicity and side effects. Machine learning (ML) based radiomics models for predicting toxicity mostly rely on features extracted from pre-treatment imaging data. This study aims to compare different models in predicting radiation-induced xerostomia and sticky saliva in both early and late stages HNC patients using CT and MRI image features along with demographics and dosimetric information.<i>Materials and Methods.</i>A cohort of 85 HNC patients who underwent radiation treatment was evaluated. We built different ML-based classifiers to build a multi-objective, multimodal radiomics model by extracting 346 different features from patient data. The models were trained and tested for prediction, utilizing Relief feature selection method and eight classifiers consisting eXtreme Gradient Boosting (XGBoost), Multilayer Perceptron (MLP), Support Vector Machines (SVM), Random Forest (RF), K-Nearest Neighbor (KNN), Naive Bayes (NB), Logistic Regression (LR), and Decision Tree (DT). The performance of the models was evaluated using sensitivity, specificity, area under the curve (AUC), and accuracy metrics.<i>Results.</i>Using a combination of demographics, dosimetric, and image features, the SVM model obtained the best performance with AUC of 0.77 and 0.81 for predicting early sticky saliva and xerostomia, respectively. Also, SVM and MLP classifiers achieved a noteworthy AUC of 0.85 and 0.64 for predicting late sticky saliva and xerostomia, respectively.<i>Conclusion</i>. This study highlights the potential of baseline CT and MRI image features, combined with dosimetric data and patient demographics, to predict radiation-induced xerostomia and sticky saliva. The use of ML techniques provides valuable insights for personalized treatment planning to mitigate toxicity effects during radiation therapy for HNC patients.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adafac","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Purpose. Although radiotherapy techniques are a primary treatment for head and neck cancer (HNC), they are still associated with substantial toxicity and side effects. Machine learning (ML) based radiomics models for predicting toxicity mostly rely on features extracted from pre-treatment imaging data. This study aims to compare different models in predicting radiation-induced xerostomia and sticky saliva in both early and late stages HNC patients using CT and MRI image features along with demographics and dosimetric information.Materials and Methods.A cohort of 85 HNC patients who underwent radiation treatment was evaluated. We built different ML-based classifiers to build a multi-objective, multimodal radiomics model by extracting 346 different features from patient data. The models were trained and tested for prediction, utilizing Relief feature selection method and eight classifiers consisting eXtreme Gradient Boosting (XGBoost), Multilayer Perceptron (MLP), Support Vector Machines (SVM), Random Forest (RF), K-Nearest Neighbor (KNN), Naive Bayes (NB), Logistic Regression (LR), and Decision Tree (DT). The performance of the models was evaluated using sensitivity, specificity, area under the curve (AUC), and accuracy metrics.Results.Using a combination of demographics, dosimetric, and image features, the SVM model obtained the best performance with AUC of 0.77 and 0.81 for predicting early sticky saliva and xerostomia, respectively. Also, SVM and MLP classifiers achieved a noteworthy AUC of 0.85 and 0.64 for predicting late sticky saliva and xerostomia, respectively.Conclusion. This study highlights the potential of baseline CT and MRI image features, combined with dosimetric data and patient demographics, to predict radiation-induced xerostomia and sticky saliva. The use of ML techniques provides valuable insights for personalized treatment planning to mitigate toxicity effects during radiation therapy for HNC patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信