Gestational arsenite exposure alters maternal postpartum heart size and induces Ca2+-handling dysregulation in cardiomyocytes.

IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Nicole Taube, Morgan Steiner, Obialunanma V Ebenebe-Kasonde, Raihan Kabir, Haley Garbus-Grant, Sarah-Marie Alam El Din, Emily Illingworth, Nadan Wang, Brian L Lin, Mark J Kohr
{"title":"Gestational arsenite exposure alters maternal postpartum heart size and induces Ca<sup>2+</sup>-handling dysregulation in cardiomyocytes.","authors":"Nicole Taube, Morgan Steiner, Obialunanma V Ebenebe-Kasonde, Raihan Kabir, Haley Garbus-Grant, Sarah-Marie Alam El Din, Emily Illingworth, Nadan Wang, Brian L Lin, Mark J Kohr","doi":"10.1152/ajpheart.00266.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular disease is the leading cause of mortality in the US. Studies suggest a role for environmental exposures in the etiology of cardiovascular disease, including exposure to arsenic through drinking water. Arsenic exposure during pregnancy has been shown to have effects on offspring, but few studies have examined impacts on maternal cardiovascular health. While our prior work documented the detrimental effect of arsenic on the maternal heart during pregnancy, our current study examines the effect of gestational arsenic exposure on the maternal heart postpartum. Timed-pregnant wild-type (C57BL/6J) mice were exposed to 0, 100 or 1000 µg/L sodium arsenite (NaAsO2) via drinking water from embryonic day 2.5 until parturition. Postpartum heart structure and function was assessed via transthoracic echocardiography and gravimetric measurement. Hypertrophic markers were probed via qRT-PCR and western blot. Isolated cardiomyocyte Ca<sup>2+</sup>-handling and contraction were also assessed, along with the expression of with Ca<sup>2+</sup>-handling and contractile proteins. Interestingly, we found that exposure to either 100 or 1000 µg/L sodium arsenite increased postpartum heart size at postpartum day 12 vs. non-exposed postpartum controls. At the cellular level, we found altered cardiomyocyte Ca<sup>2+</sup>-handling and contraction, along with expression changes of key contractile proteins, including α-Actin and cardiac myosin binding protein C (cMyBP-c). Together, these findings suggest that gestational arsenic exposure impacts the postpartum maternal heart, possibly inducing long-term cardiovascular changes. Furthermore, these findings highlight the importance of reducing arsenic exposure during pregnancy, and the need for more research on the impact of arsenic on maternal heart health and adverse pregnancy events.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpheart.00266.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular disease is the leading cause of mortality in the US. Studies suggest a role for environmental exposures in the etiology of cardiovascular disease, including exposure to arsenic through drinking water. Arsenic exposure during pregnancy has been shown to have effects on offspring, but few studies have examined impacts on maternal cardiovascular health. While our prior work documented the detrimental effect of arsenic on the maternal heart during pregnancy, our current study examines the effect of gestational arsenic exposure on the maternal heart postpartum. Timed-pregnant wild-type (C57BL/6J) mice were exposed to 0, 100 or 1000 µg/L sodium arsenite (NaAsO2) via drinking water from embryonic day 2.5 until parturition. Postpartum heart structure and function was assessed via transthoracic echocardiography and gravimetric measurement. Hypertrophic markers were probed via qRT-PCR and western blot. Isolated cardiomyocyte Ca2+-handling and contraction were also assessed, along with the expression of with Ca2+-handling and contractile proteins. Interestingly, we found that exposure to either 100 or 1000 µg/L sodium arsenite increased postpartum heart size at postpartum day 12 vs. non-exposed postpartum controls. At the cellular level, we found altered cardiomyocyte Ca2+-handling and contraction, along with expression changes of key contractile proteins, including α-Actin and cardiac myosin binding protein C (cMyBP-c). Together, these findings suggest that gestational arsenic exposure impacts the postpartum maternal heart, possibly inducing long-term cardiovascular changes. Furthermore, these findings highlight the importance of reducing arsenic exposure during pregnancy, and the need for more research on the impact of arsenic on maternal heart health and adverse pregnancy events.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
202
审稿时长
2-4 weeks
期刊介绍: The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信