Elevated frame rates during exercise echocardiography improve speckle-tracking success rate and augment deformation values.

IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Fabian Spahiu, Michelle Ottlik, Lars C Helbig, Eric J Stöhr
{"title":"Elevated frame rates during exercise echocardiography improve speckle-tracking success rate and augment deformation values.","authors":"Fabian Spahiu, Michelle Ottlik, Lars C Helbig, Eric J Stöhr","doi":"10.1152/ajpheart.00817.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Although two-dimensional (2-D) speckle-tracking echocardiography (STE) is important for the clinical quantification of myocardial function, it remains unknown whether increased frame rates during exercise STE augment tracking success and absolute deformation values. Overall, 19 participants (15 males and 4 females; aged 26.7 ± 4.8) underwent stepwise exercise testing on a recumbent bicycle. Exercise started at 50 W, increasing by 30 W every 3 min until a target heart rate (HR) of 130-140 beats/min was reached. During the last 90 s of each exercise stage, echocardiographic sequences for offline quantification of longitudinal strain (LS), peak twist, untwisting velocity, basal rotation, and apical rotation were acquired with high [high frames per second (HFPS)], medium [medium frames per second (MFPS)], and low-frames per second (LFPS)]. Differences in tracking success were determined by using Chi-square test, and the impact of different frame rates on absolute deformation values was compared by using mixed-model analysis. Utilization of HFPS significantly improved tracking success for parasternal short-axis images. LS acquired at HFPS was the highest at baseline and across all the exercise stages. Similar trends were observed for twist, peak untwisting velocity, and apical rotation, whereas basal rotation showed no differences. Mixed-model analysis revealed a significant impact of frame rate setting on LS (<i>P</i> < 0.05) and untwisting velocity (<i>P</i> < 0.05). In contrast to recommendations by leading organizations advocating for frame rates between 40 and 80 frames per second (fps) during resting conditions, with a proportional increase as heart rate rises, our findings suggest that consistently maintaining the frame rate at the highest feasible level is preferable for achieving optimal-tracking success and accuracy in STE.<b>NEW & NOTEWORTHY</b> This study demonstrates the benefits of high frame per second (HFPS) rate settings in speckle-tracking echocardiography, achieving superior-tracking success and higher deformation values, including longitudinal strain and untwisting velocity, compared with lower frame rates. These advantages, particularly evident at elevated heart rates, highlight the importance of high temporal resolution for accurate cardiac imaging under stress conditions. The findings support prioritizing HFPS in clinical and research settings to improve tracking reliability and data accuracy.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H752-H760"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpheart.00817.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Although two-dimensional (2-D) speckle-tracking echocardiography (STE) is important for the clinical quantification of myocardial function, it remains unknown whether increased frame rates during exercise STE augment tracking success and absolute deformation values. Overall, 19 participants (15 males and 4 females; aged 26.7 ± 4.8) underwent stepwise exercise testing on a recumbent bicycle. Exercise started at 50 W, increasing by 30 W every 3 min until a target heart rate (HR) of 130-140 beats/min was reached. During the last 90 s of each exercise stage, echocardiographic sequences for offline quantification of longitudinal strain (LS), peak twist, untwisting velocity, basal rotation, and apical rotation were acquired with high [high frames per second (HFPS)], medium [medium frames per second (MFPS)], and low-frames per second (LFPS)]. Differences in tracking success were determined by using Chi-square test, and the impact of different frame rates on absolute deformation values was compared by using mixed-model analysis. Utilization of HFPS significantly improved tracking success for parasternal short-axis images. LS acquired at HFPS was the highest at baseline and across all the exercise stages. Similar trends were observed for twist, peak untwisting velocity, and apical rotation, whereas basal rotation showed no differences. Mixed-model analysis revealed a significant impact of frame rate setting on LS (P < 0.05) and untwisting velocity (P < 0.05). In contrast to recommendations by leading organizations advocating for frame rates between 40 and 80 frames per second (fps) during resting conditions, with a proportional increase as heart rate rises, our findings suggest that consistently maintaining the frame rate at the highest feasible level is preferable for achieving optimal-tracking success and accuracy in STE.NEW & NOTEWORTHY This study demonstrates the benefits of high frame per second (HFPS) rate settings in speckle-tracking echocardiography, achieving superior-tracking success and higher deformation values, including longitudinal strain and untwisting velocity, compared with lower frame rates. These advantages, particularly evident at elevated heart rates, highlight the importance of high temporal resolution for accurate cardiac imaging under stress conditions. The findings support prioritizing HFPS in clinical and research settings to improve tracking reliability and data accuracy.

运动超声心动图提高帧率提高斑点跟踪成功率和增加变形值。
背景:尽管二维斑点跟踪超声心动图(STE)对临床心肌功能量化很重要,但运动STE时帧率的增加是否会增加跟踪成功率和绝对变形值仍不清楚。方法:19例受试者(男15例,女4例;年龄26.7±4.8岁,在卧式自行车上进行阶梯式运动试验。运动从50w开始,每3分钟增加30w,直到达到目标心率130-140 bpm。在每个运动阶段的最后90秒,以高帧率(HFPS)、中帧率(MFPS)和低帧率(LFPS)获取纵向应变(LS)、峰值扭转、解扭转速度、基底旋转和根尖旋转的脱机量化超声心动图序列。使用卡方检验确定跟踪成功的差异,并使用混合模型分析比较不同帧速率对绝对变形值的影响。结果:HFPS的使用显著提高了胸骨旁短轴图像的跟踪成功率。在HFPS中获得的LS在基线和所有运动阶段最高。扭转、峰值解扭速度和根尖旋转均有相似的变化趋势,而根尖旋转无差异。混合模型分析揭示了帧率设置对静止状态的显著影响(p结论:与领先组织倡导的静止状态下帧率在40 - 80帧/秒之间的建议相反,随着心率的升高,帧率会成比例地增加,我们的研究结果表明,在STE中,始终将帧率保持在最高可行水平是实现最佳跟踪成功和准确性的首选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
202
审稿时长
2-4 weeks
期刊介绍: The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信