{"title":"Iron-sulfur clusters: the road to room temperature.","authors":"Brighton A Skeel, Daniel L M Suess","doi":"10.1007/s00775-025-02094-0","DOIUrl":null,"url":null,"abstract":"<p><p>Iron-sulfur proteins perform a wide variety of reactions central to the metabolisms of all living organisms. Foundational to their reaction chemistry are the rich electronic structures of their constituent Fe-S clusters, which differ in important ways from the active sites of mononuclear Fe enzymes. In this perspective, we summarize the essential electronic structure features that make Fe-S clusters unique, and point to the need for studies aimed at understanding the electronic basis for their reactivity under physiological conditions. Specifically, at ambient temperature, both the ground state and a large number of excited states are thermally populated, and thus a complete understanding of Fe-S cluster reactivity must take into account the properties, energies, and reactivity patterns of these excited states. We highlight prior research toward characterizing the low-energy excited states of Fe-S clusters that has established what is now a consensus model of these excited state manifolds and the bonding interactions that give rise to them. In particular, we discuss the low-energy alternate spin states and valence electron configurations that occur in Fe-S clusters of varying nuclearities, and finally suggest that there may be unrecognized functional roles for these states.</p>","PeriodicalId":603,"journal":{"name":"Journal of Biological Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1007/s00775-025-02094-0","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Iron-sulfur proteins perform a wide variety of reactions central to the metabolisms of all living organisms. Foundational to their reaction chemistry are the rich electronic structures of their constituent Fe-S clusters, which differ in important ways from the active sites of mononuclear Fe enzymes. In this perspective, we summarize the essential electronic structure features that make Fe-S clusters unique, and point to the need for studies aimed at understanding the electronic basis for their reactivity under physiological conditions. Specifically, at ambient temperature, both the ground state and a large number of excited states are thermally populated, and thus a complete understanding of Fe-S cluster reactivity must take into account the properties, energies, and reactivity patterns of these excited states. We highlight prior research toward characterizing the low-energy excited states of Fe-S clusters that has established what is now a consensus model of these excited state manifolds and the bonding interactions that give rise to them. In particular, we discuss the low-energy alternate spin states and valence electron configurations that occur in Fe-S clusters of varying nuclearities, and finally suggest that there may be unrecognized functional roles for these states.
期刊介绍:
Biological inorganic chemistry is a growing field of science that embraces the principles of biology and inorganic chemistry and impacts other fields ranging from medicine to the environment. JBIC (Journal of Biological Inorganic Chemistry) seeks to promote this field internationally. The Journal is primarily concerned with advances in understanding the role of metal ions within a biological matrix—be it a protein, DNA/RNA, or a cell, as well as appropriate model studies. Manuscripts describing high-quality original research on the above topics in English are invited for submission to this Journal. The Journal publishes original articles, minireviews, and commentaries on debated issues.