Single-Site Local-Density Potentials for the Mesoscopic Representation of Water Based on the SAFT-VR Mie Equation of State.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
James P D O'Connor, Ian P Stott, Andrew J Masters, Carlos Avendaño
{"title":"Single-Site Local-Density Potentials for the Mesoscopic Representation of Water Based on the SAFT-VR Mie Equation of State.","authors":"James P D O'Connor, Ian P Stott, Andrew J Masters, Carlos Avendaño","doi":"10.1021/acs.jpcb.4c06454","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we present three mesoscopic models for water. All three models make use of local density-dependent interaction potentials, as employed within the Pagonabarraga-Frenkel framework [Pagonabarraga, I.; Frenkel, D. <i>J. Chem. Phys.</i> 2001, 115, 5015-5026]. The forms of these three interaction potentials are based on the free energy function of the SAFT-VR Mie equation of state (EoS) [Lafitte, T. <i>J. Chem. Phys.</i> 2013, 139, 154504]. Two of these models represent the water-water interaction as a spherically symmetric Mie interaction with temperature-dependent parameters, while the third model works with a temperature-independent Mie potential, but then explicitly models the effect of hydrogen bonding. All three models provide good predictions of the vapor-liquid equilibrium of water over a wide temperature range. They also give accurate predictions of the isothermal compressibility for both sub- and supercritical conditions. To model the interfacial tension of the vapor-liquid interface with our mesoscale simulations, we added a square-gradient term to our potential energy function. We show that the addition of this term has a minimal effect on the bulk properties of water. However, by parametrizing the coefficient of this term as a function of temperature, all three models again provide excellent predictions of water's interfacial tension over a wide temperature range. Of the three models, our preference is for the model that includes an association term, as this model can operate successfully over a wider range of conditions.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c06454","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present three mesoscopic models for water. All three models make use of local density-dependent interaction potentials, as employed within the Pagonabarraga-Frenkel framework [Pagonabarraga, I.; Frenkel, D. J. Chem. Phys. 2001, 115, 5015-5026]. The forms of these three interaction potentials are based on the free energy function of the SAFT-VR Mie equation of state (EoS) [Lafitte, T. J. Chem. Phys. 2013, 139, 154504]. Two of these models represent the water-water interaction as a spherically symmetric Mie interaction with temperature-dependent parameters, while the third model works with a temperature-independent Mie potential, but then explicitly models the effect of hydrogen bonding. All three models provide good predictions of the vapor-liquid equilibrium of water over a wide temperature range. They also give accurate predictions of the isothermal compressibility for both sub- and supercritical conditions. To model the interfacial tension of the vapor-liquid interface with our mesoscale simulations, we added a square-gradient term to our potential energy function. We show that the addition of this term has a minimal effect on the bulk properties of water. However, by parametrizing the coefficient of this term as a function of temperature, all three models again provide excellent predictions of water's interfacial tension over a wide temperature range. Of the three models, our preference is for the model that includes an association term, as this model can operate successfully over a wider range of conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信