Evaluation of Mesoporous Silica Nanoparticles as Carriers of Triarylmethyl Radical Spin Probes for EPR Oximetry.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Misa A Shaw, Martin Poncelet, Derrick A Banerjee, Konstantinos A Sierros, Benoit Driesschaert
{"title":"Evaluation of Mesoporous Silica Nanoparticles as Carriers of Triarylmethyl Radical Spin Probes for EPR Oximetry.","authors":"Misa A Shaw, Martin Poncelet, Derrick A Banerjee, Konstantinos A Sierros, Benoit Driesschaert","doi":"10.1021/acs.jpcb.4c06480","DOIUrl":null,"url":null,"abstract":"<p><p><i>In vivo</i> measurement and mapping of oxygen levels within the tissues are crucial in understanding the physiopathological processes of numerous diseases, such as cancer, diabetes, or peripheral vascular diseases. Electron paramagnetic resonance (EPR) associated with biocompatible exogenous spin probes, such as Ox071 triarylmethyl (TAM) radical, is becoming the new gold standard for oxygen mapping in preclinical settings. However, these probes do not show tissue selectivity when injected systemically, and they are not cell permeable, reporting oxygen from the extracellular compartment only. Recently, Ox071-loaded mesoporous silica nanoparticles (MSNs) were proposed for intracellular tumor oxygen mapping in both <i>in vitro</i> and <i>in vivo</i> models. However, the EPR spectrum of the Ox071 spin probe is poorly sensitive to mobility due to the small anisotropy of its g-factor and the absence of hyperfine splitting, making it more difficult to study the mobility of the radical inside the MSNs or its location. Using <sup>13</sup>C<sub>1</sub> isotopologues of Ox071 and the deuterated Finland trityl (dFT) spin probes, which are highly sensitive to molecular tumbling, we showed that the loading of the probes inside homemade and commercial cationic MSNs drastically decreases their mobility while the high local concentration of the probe inside the MSNs leads to dipolar line width broadening (self-relaxation). This decrease in molecular tumbling and line broadening hampers the oxygen-sensing properties of Ox071 or dFT probes used for EPR oximetry when loaded into MSNs.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c06480","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In vivo measurement and mapping of oxygen levels within the tissues are crucial in understanding the physiopathological processes of numerous diseases, such as cancer, diabetes, or peripheral vascular diseases. Electron paramagnetic resonance (EPR) associated with biocompatible exogenous spin probes, such as Ox071 triarylmethyl (TAM) radical, is becoming the new gold standard for oxygen mapping in preclinical settings. However, these probes do not show tissue selectivity when injected systemically, and they are not cell permeable, reporting oxygen from the extracellular compartment only. Recently, Ox071-loaded mesoporous silica nanoparticles (MSNs) were proposed for intracellular tumor oxygen mapping in both in vitro and in vivo models. However, the EPR spectrum of the Ox071 spin probe is poorly sensitive to mobility due to the small anisotropy of its g-factor and the absence of hyperfine splitting, making it more difficult to study the mobility of the radical inside the MSNs or its location. Using 13C1 isotopologues of Ox071 and the deuterated Finland trityl (dFT) spin probes, which are highly sensitive to molecular tumbling, we showed that the loading of the probes inside homemade and commercial cationic MSNs drastically decreases their mobility while the high local concentration of the probe inside the MSNs leads to dipolar line width broadening (self-relaxation). This decrease in molecular tumbling and line broadening hampers the oxygen-sensing properties of Ox071 or dFT probes used for EPR oximetry when loaded into MSNs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信