Reactions of SleC, Its Structure and Inhibition in Mitigation of Spore Germination in Clostridioides difficile.

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Journal of the American Chemical Society Pub Date : 2025-02-12 Epub Date: 2025-01-30 DOI:10.1021/jacs.4c14976
Choon Kim, Rafael Molina, Mijoon Lee, Alba Garay-Alvarez, Jingdong Yang, Yuanyuan Qian, Biruk T Birhanu, Dusan Hesek, Juan A Hermoso, Mayland Chang, Shahriar Mobashery
{"title":"Reactions of SleC, Its Structure and Inhibition in Mitigation of Spore Germination in <i>Clostridioides difficile</i>.","authors":"Choon Kim, Rafael Molina, Mijoon Lee, Alba Garay-Alvarez, Jingdong Yang, Yuanyuan Qian, Biruk T Birhanu, Dusan Hesek, Juan A Hermoso, Mayland Chang, Shahriar Mobashery","doi":"10.1021/jacs.4c14976","DOIUrl":null,"url":null,"abstract":"<p><p>Spore germination in <i>Clostridioides difficile</i> is initiated by a cascade of activities of several proteins that culminates in the activation of SleC, a cell-wall-processing enzyme. We report herein the details of the enzymatic activities of SleC by the use of synthetic peptidoglycan fragments and of spore sacculi. The reactions include the formation of 1,6-anhydromuramate─a hallmark of lytic transglycosylase activity─as well as a muramate hydrolytic product, both of which proceed through the same transient oxocarbenium species. Furthermore, we report the first X-ray structure of zymogenic prepro-SleC at 2.1 Å resolution. Additionally, the structure provides insights into the YabG and CspB cleavage sites necessary for the activation of the zymogen. The active site of SleC presents relevant differences in contrast to SpoIID, a homologous lytic transglycosylase involved in the sporulation <i>Clostridioides</i> species, explaining the ability of SleC to turn over the spore sacculus, a prerequisite for the germination event. A screening of an in-house library of compounds led to the discovery of an oxadiazole that binds to the mature (activated) form of SleC, whereby it shuts down the ability of spores to germinate in the presence of germinants. This is consistent with the SleC activity as an end-point for the germination cascade. The mechanistic knowledge and the inhibitor hold the promise in addressing an unmet medical need in intervention of recurrent infections by <i>C. difficile</i>.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"5060-5070"},"PeriodicalIF":14.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c14976","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spore germination in Clostridioides difficile is initiated by a cascade of activities of several proteins that culminates in the activation of SleC, a cell-wall-processing enzyme. We report herein the details of the enzymatic activities of SleC by the use of synthetic peptidoglycan fragments and of spore sacculi. The reactions include the formation of 1,6-anhydromuramate─a hallmark of lytic transglycosylase activity─as well as a muramate hydrolytic product, both of which proceed through the same transient oxocarbenium species. Furthermore, we report the first X-ray structure of zymogenic prepro-SleC at 2.1 Å resolution. Additionally, the structure provides insights into the YabG and CspB cleavage sites necessary for the activation of the zymogen. The active site of SleC presents relevant differences in contrast to SpoIID, a homologous lytic transglycosylase involved in the sporulation Clostridioides species, explaining the ability of SleC to turn over the spore sacculus, a prerequisite for the germination event. A screening of an in-house library of compounds led to the discovery of an oxadiazole that binds to the mature (activated) form of SleC, whereby it shuts down the ability of spores to germinate in the presence of germinants. This is consistent with the SleC activity as an end-point for the germination cascade. The mechanistic knowledge and the inhibitor hold the promise in addressing an unmet medical need in intervention of recurrent infections by C. difficile.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信