Cannabidiol Toxicity Driven by Hydroxyquinone Formation.

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL
Metzli I Montero, Pravien S Rajaram, Jose E Zamora Alvarado, Kara E McCloskey, Ryan D Baxter, Roberto C Andresen Eguiluz
{"title":"Cannabidiol Toxicity Driven by Hydroxyquinone Formation.","authors":"Metzli I Montero, Pravien S Rajaram, Jose E Zamora Alvarado, Kara E McCloskey, Ryan D Baxter, Roberto C Andresen Eguiluz","doi":"10.1021/acs.chemrestox.4c00448","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative byproducts of cannabidiol (CBD) are known to be cytotoxic. However, CBD susceptibility to oxidation and resulting toxicity dissolved in two common solvents, ethanol (EtOH) and dimethyl sulfoxide (DMSO), is seldom discussed. Furthermore, CBD products contain a wide range of concentrations, making it challenging to link general health risks associated with CBD cytotoxicity. Here, we report on the effect of CBD and CBD analogues dissolved in EtOH or DMSO at various concentrations. The cells used in these studies were human umbilical vascular endothelial cells (HUVECs). Our findings show significant CBD oxidation to cannabidiol-quinone (CBD-Q) and subsequent cytotoxicity, occurring at 10 μM concentration, regardless of the solution delivery vehicle. Moreover, a new analogue of CBD, cannabidiol-diacetate (CBD-DA), exhibits significantly more stability and reduced toxicity compared with CBD or CBD-Q, respectively. This knowledge is important for determining concentration-dependent health risks of complex cannabinoid mixtures and establishing legal limits.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00448","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidative byproducts of cannabidiol (CBD) are known to be cytotoxic. However, CBD susceptibility to oxidation and resulting toxicity dissolved in two common solvents, ethanol (EtOH) and dimethyl sulfoxide (DMSO), is seldom discussed. Furthermore, CBD products contain a wide range of concentrations, making it challenging to link general health risks associated with CBD cytotoxicity. Here, we report on the effect of CBD and CBD analogues dissolved in EtOH or DMSO at various concentrations. The cells used in these studies were human umbilical vascular endothelial cells (HUVECs). Our findings show significant CBD oxidation to cannabidiol-quinone (CBD-Q) and subsequent cytotoxicity, occurring at 10 μM concentration, regardless of the solution delivery vehicle. Moreover, a new analogue of CBD, cannabidiol-diacetate (CBD-DA), exhibits significantly more stability and reduced toxicity compared with CBD or CBD-Q, respectively. This knowledge is important for determining concentration-dependent health risks of complex cannabinoid mixtures and establishing legal limits.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
7.30%
发文量
215
审稿时长
3.5 months
期刊介绍: Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信