A physical optics formulation of Bloch waves and its application to 4D STEM, 3D ED and inelastic scattering simulations.

IF 1.8 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Budhika G Mendis
{"title":"A physical optics formulation of Bloch waves and its application to 4D STEM, 3D ED and inelastic scattering simulations.","authors":"Budhika G Mendis","doi":"10.1107/S2053273325000142","DOIUrl":null,"url":null,"abstract":"<p><p>Bloch waves are often used in dynamical diffraction calculations, such as simulating electron diffraction intensities for crystal structure refinement. However, this approach relies on matrix diagonalization and is therefore computationally expensive for large unit cell crystals. Here Bloch wave theory is re-formulated using the physical optics concepts underpinning the multislice method. In particular, the multislice phase grating and propagator functions are expressed in matrix form using elements of the Bloch wave structure matrix. The specimen is divided into thin slices, and the evolution of the electron wavefunction through the specimen calculated using the Bloch phase grating and propagator matrices. By decoupling specimen scattering from free space propagation of the electron beam, many computationally demanding simulations, such as 4D STEM imaging modes, 3D ED precession and rotation electron diffraction, phonon and plasmon inelastic scattering, are considerably simplified. The computational cost scales as {\\cal O}({N^2} ) per slice, compared with {\\cal O}({N^3} ) for a standard Bloch wave calculation, where N is the number of diffracted beams. For perfect crystals the performance can at times be better than multislice, since only the important Bragg reflections in the otherwise sparse diffraction plane are calculated. The physical optics formulation of Bloch waves is therefore an important step towards more routine dynamical diffraction simulation of large data sets.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"113-123"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873815/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A: Foundations and Advances","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1107/S2053273325000142","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bloch waves are often used in dynamical diffraction calculations, such as simulating electron diffraction intensities for crystal structure refinement. However, this approach relies on matrix diagonalization and is therefore computationally expensive for large unit cell crystals. Here Bloch wave theory is re-formulated using the physical optics concepts underpinning the multislice method. In particular, the multislice phase grating and propagator functions are expressed in matrix form using elements of the Bloch wave structure matrix. The specimen is divided into thin slices, and the evolution of the electron wavefunction through the specimen calculated using the Bloch phase grating and propagator matrices. By decoupling specimen scattering from free space propagation of the electron beam, many computationally demanding simulations, such as 4D STEM imaging modes, 3D ED precession and rotation electron diffraction, phonon and plasmon inelastic scattering, are considerably simplified. The computational cost scales as {\cal O}({N^2} ) per slice, compared with {\cal O}({N^3} ) for a standard Bloch wave calculation, where N is the number of diffracted beams. For perfect crystals the performance can at times be better than multislice, since only the important Bragg reflections in the otherwise sparse diffraction plane are calculated. The physical optics formulation of Bloch waves is therefore an important step towards more routine dynamical diffraction simulation of large data sets.

布洛赫波的物理光学公式及其在4D STEM、3D ED和非弹性散射模拟中的应用。
布洛赫波常用于动态衍射计算,如模拟电子衍射强度以细化晶体结构。然而,这种方法依赖于矩阵对角化,因此对于大单位胞晶体来说计算成本很高。在这里,布洛赫波理论是用支撑多层方法的物理光学概念重新表述的。特别地,多片相位光栅和传播函数用布洛赫波结构矩阵的元素以矩阵形式表示。将样品分成薄片,并利用布洛赫相位光栅和传播矩阵计算电子波函数在样品中的演化。通过将样品散射与电子束的自由空间传播解耦,许多计算要求很高的模拟,如4D STEM成像模式、3D ED进动和旋转电子衍射、声子和等离子体非弹性散射,都得到了极大的简化。计算成本为每片{\cal O}({N^2}),而标准布洛赫波计算的计算成本为{\cal O}({N^3}),其中N是衍射光束的数量。对于完美的晶体,性能有时可以比多片更好,因为只有重要的布拉格反射在其他稀疏的衍射平面上被计算。因此,布洛赫波的物理光学公式是迈向更常规的大数据集动态衍射模拟的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Crystallographica Section A: Foundations and Advances
Acta Crystallographica Section A: Foundations and Advances CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
2.60
自引率
11.10%
发文量
419
期刊介绍: Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials. The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial. The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信