Evaluation of the Catalytic Effect of Metal Additives on the Performance of a Combined Battery and Electrolyzer System.

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
ACS Applied Energy Materials Pub Date : 2025-01-08 eCollection Date: 2025-01-27 DOI:10.1021/acsaem.4c02648
Elizabeth Ashton, Matthew Brenton, Jonathan G Wilson, John P Barton, Richard Wilson, Danielle Strickland, Simon A Kondrat, Nicolas Clement, John Wertz, Jibo Zhang
{"title":"Evaluation of the Catalytic Effect of Metal Additives on the Performance of a Combined Battery and Electrolyzer System.","authors":"Elizabeth Ashton, Matthew Brenton, Jonathan G Wilson, John P Barton, Richard Wilson, Danielle Strickland, Simon A Kondrat, Nicolas Clement, John Wertz, Jibo Zhang","doi":"10.1021/acsaem.4c02648","DOIUrl":null,"url":null,"abstract":"<p><p>A low-cost method of green hydrogen production via the modification of a lead acid battery has been achieved, resulting in a hydrogen flow rate of 5.3 L min<sup>-1</sup> from a 20-cell string. The electrochemical behavior and catalytic effect of various metal additives on the hydrogen evolution reaction (HER) was evaluated using cyclic voltammetry. Nickel, cobalt, antimony, manganese, and iron were investigated, with 66 ppm nickel achieving a 75% increase in hydrogen produced from a modified lead acid battery. Design of Experiments (DOE) employing a simple centroid design model to analyze the combined additive effects of nickel, cobalt, and antimony was performed to evaluate the effect on the HER. A combination of Ni:Co:Sb in the ratio 66:17:17 ppm achieved the greatest end voltage shift of the HER from -1.65 to -1.50 V; however, no increase in hydrogen yield was observed in comparison to 66 ppm of nickel when added to a full-scale cell. Gas chromatography using a thermal conductive detector and a sulfur chemiluminescence detector were used to measure the purity of hydrogen obtained from a string of 20 battery electrolyzer cells connected in series. 99% purity hydrogen gas was obtained from the battery electrolyzer cells, with H<sub>2</sub>S impurities below the limit of detection (0.221 ppm).</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 2","pages":"1112-1125"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776374/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaem.4c02648","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A low-cost method of green hydrogen production via the modification of a lead acid battery has been achieved, resulting in a hydrogen flow rate of 5.3 L min-1 from a 20-cell string. The electrochemical behavior and catalytic effect of various metal additives on the hydrogen evolution reaction (HER) was evaluated using cyclic voltammetry. Nickel, cobalt, antimony, manganese, and iron were investigated, with 66 ppm nickel achieving a 75% increase in hydrogen produced from a modified lead acid battery. Design of Experiments (DOE) employing a simple centroid design model to analyze the combined additive effects of nickel, cobalt, and antimony was performed to evaluate the effect on the HER. A combination of Ni:Co:Sb in the ratio 66:17:17 ppm achieved the greatest end voltage shift of the HER from -1.65 to -1.50 V; however, no increase in hydrogen yield was observed in comparison to 66 ppm of nickel when added to a full-scale cell. Gas chromatography using a thermal conductive detector and a sulfur chemiluminescence detector were used to measure the purity of hydrogen obtained from a string of 20 battery electrolyzer cells connected in series. 99% purity hydrogen gas was obtained from the battery electrolyzer cells, with H2S impurities below the limit of detection (0.221 ppm).

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信