Investigating the Effects of Copper Impurity Deposition on the Structure and Electrochemical Behavior of Hydrogen Evolution Electrocatalyst Materials.

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
ACS Applied Energy Materials Pub Date : 2025-01-14 eCollection Date: 2025-01-27 DOI:10.1021/acsaem.4c02697
Sonakshi Saini, Salem C Wright, Sahanaz Parvin, Jonas Baltrusaitis, Matthew T McDowell
{"title":"Investigating the Effects of Copper Impurity Deposition on the Structure and Electrochemical Behavior of Hydrogen Evolution Electrocatalyst Materials.","authors":"Sonakshi Saini, Salem C Wright, Sahanaz Parvin, Jonas Baltrusaitis, Matthew T McDowell","doi":"10.1021/acsaem.4c02697","DOIUrl":null,"url":null,"abstract":"<p><p>Electrolysis of impure water (such as seawater) has recently garnered research interest as it may enable hydrogen production at reduced costs. However, the tendency of impurity ions and other species to degrade electrocatalysts and membranes within an electrolyzer is a serious challenge. Here, we investigate the effects of copper impurities of varying concentrations on the hydrogen evolution reaction (HER) using platinum electrocatalysts. A decrease of current density is observed with an increasing copper concentration. By comparing the effect of ionic impurities on current density at different concentrations, we gain insight into how impurities can interfere with the HER at different potentials. Surface characterization of the electrodes reveals differences in the morphology and extent of copper deposition on HER-active platinum vs inactive gold electrodes. This enables an improved understanding of how copper nucleates and grows on the two types of electrodes under different electrochemical conditions while also confirming deposition in low-concentration cases, as present in seawater. The results indicate that copper electrodeposition competes with the HER, and the nature of copper electrodeposition varies depending on the electrocatalytic activity of the electrode. This study provides insight toward catalyst design that can withstand the effects of impurity-induced degradation over extended use.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 2","pages":"1143-1153"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775884/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaem.4c02697","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrolysis of impure water (such as seawater) has recently garnered research interest as it may enable hydrogen production at reduced costs. However, the tendency of impurity ions and other species to degrade electrocatalysts and membranes within an electrolyzer is a serious challenge. Here, we investigate the effects of copper impurities of varying concentrations on the hydrogen evolution reaction (HER) using platinum electrocatalysts. A decrease of current density is observed with an increasing copper concentration. By comparing the effect of ionic impurities on current density at different concentrations, we gain insight into how impurities can interfere with the HER at different potentials. Surface characterization of the electrodes reveals differences in the morphology and extent of copper deposition on HER-active platinum vs inactive gold electrodes. This enables an improved understanding of how copper nucleates and grows on the two types of electrodes under different electrochemical conditions while also confirming deposition in low-concentration cases, as present in seawater. The results indicate that copper electrodeposition competes with the HER, and the nature of copper electrodeposition varies depending on the electrocatalytic activity of the electrode. This study provides insight toward catalyst design that can withstand the effects of impurity-induced degradation over extended use.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信