{"title":"Methamphetamine-mediated astrocytic pyroptosis and neuroinflammation involves miR-152–NLRP6 inflammasome signaling axis","authors":"Abiola Oladapo, Muthukumar Kannan, Uma Maheswari Deshetty, Seema Singh, Shilpa Buch, Palsamy Periyasamy","doi":"10.1016/j.redox.2025.103517","DOIUrl":null,"url":null,"abstract":"<div><div>Methamphetamine is a widely abused drug associated with significant neuroinflammation and neurodegeneration, mainly through the activation of glial cells and neurons in the central nervous system. This study investigates the role of the astrocyte-specific NOD-like receptor family pyrin domain-containing protein 6 (NLRP6) inflammasome in methamphetamine-induced astrocytic pyroptosis and neuroinflammation. Our findings demonstrate that methamphetamine exposure induces NLRP6-dependent pyroptosis, astrocyte activation, and the release of proinflammatory cytokines in mouse primary astrocytes. Gene silencing of NLRP6 reduces methamphetamine-induced pyroptosis and proinflammatory cytokines release. We also identified miR-152 as a critical upstream regulator of NLRP6, which is downregulated in methamphetamine-exposed astrocytes. Overexpression of miR-152 decreases NLRP6 expression, mitigating methamphetamine-induced pyroptosis and inflammation. <em>In vivo</em> and <em>ex vivo</em> studies in methamphetamine-exposed mice confirmed these results and showed that methamphetamine induces anxiety-like, cognitive impairment, and depression-like behavior, further linking astrocyte-specific NLRP6 signaling to methamphetamine-induced neuroinflammation. This study highlights the potential of targeting the NLRP6 inflammasome in astrocytes as a therapeutic approach to alleviate methamphetamine-induced central nervous system pathology. Further research is warranted to explore clinical applications and identify therapeutic targets for methamphetamine-related neurological disorders.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"80 ","pages":"Article 103517"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725000308","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Methamphetamine is a widely abused drug associated with significant neuroinflammation and neurodegeneration, mainly through the activation of glial cells and neurons in the central nervous system. This study investigates the role of the astrocyte-specific NOD-like receptor family pyrin domain-containing protein 6 (NLRP6) inflammasome in methamphetamine-induced astrocytic pyroptosis and neuroinflammation. Our findings demonstrate that methamphetamine exposure induces NLRP6-dependent pyroptosis, astrocyte activation, and the release of proinflammatory cytokines in mouse primary astrocytes. Gene silencing of NLRP6 reduces methamphetamine-induced pyroptosis and proinflammatory cytokines release. We also identified miR-152 as a critical upstream regulator of NLRP6, which is downregulated in methamphetamine-exposed astrocytes. Overexpression of miR-152 decreases NLRP6 expression, mitigating methamphetamine-induced pyroptosis and inflammation. In vivo and ex vivo studies in methamphetamine-exposed mice confirmed these results and showed that methamphetamine induces anxiety-like, cognitive impairment, and depression-like behavior, further linking astrocyte-specific NLRP6 signaling to methamphetamine-induced neuroinflammation. This study highlights the potential of targeting the NLRP6 inflammasome in astrocytes as a therapeutic approach to alleviate methamphetamine-induced central nervous system pathology. Further research is warranted to explore clinical applications and identify therapeutic targets for methamphetamine-related neurological disorders.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.