Forecasting chaotic time series: Comparative performance of LSTM-based and Transformer-based neural network

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
João Valle, Odemir Martinez Bruno
{"title":"Forecasting chaotic time series: Comparative performance of LSTM-based and Transformer-based neural network","authors":"João Valle,&nbsp;Odemir Martinez Bruno","doi":"10.1016/j.chaos.2025.116034","DOIUrl":null,"url":null,"abstract":"<div><div>The complexity and sensitivity to initial conditions are the main characteristics of chaotic dynamical systems, making long-term forecasting a significant challenge. Deep learning, however, is a powerful technique that can potentially improve forecasting in chaotic time series. In this study, we explored the performance of modern neural network architectures in forecasting chaotic time series with different Lyapunov exponents. To accomplish this, we created a robust dataset composed of chaotic orbits with Lyapunov exponents ranging from 0.019 to 1.253 and used state-of-the-art neural network models for time series forecasting, including recurrent-based and transformer-based architectures. Our results show that LSTNet presents the best results in one-step-ahead and the recursive one-step-ahead forecasting for the majority of the time series in our dataset, enabling the prediction of chaotic time series with high Lyapunov exponent. Additionally, we observed that the sensitivity to initial conditions and complexity still affects the performance of the neural networks, decaying predictive power in time series with larger Lyapunov exponent.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"192 ","pages":"Article 116034"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925000475","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The complexity and sensitivity to initial conditions are the main characteristics of chaotic dynamical systems, making long-term forecasting a significant challenge. Deep learning, however, is a powerful technique that can potentially improve forecasting in chaotic time series. In this study, we explored the performance of modern neural network architectures in forecasting chaotic time series with different Lyapunov exponents. To accomplish this, we created a robust dataset composed of chaotic orbits with Lyapunov exponents ranging from 0.019 to 1.253 and used state-of-the-art neural network models for time series forecasting, including recurrent-based and transformer-based architectures. Our results show that LSTNet presents the best results in one-step-ahead and the recursive one-step-ahead forecasting for the majority of the time series in our dataset, enabling the prediction of chaotic time series with high Lyapunov exponent. Additionally, we observed that the sensitivity to initial conditions and complexity still affects the performance of the neural networks, decaying predictive power in time series with larger Lyapunov exponent.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信