Investigation of the mechanical characteristics of porcine brain tissue in complex environments.

Acta of bioengineering and biomechanics Pub Date : 2025-01-28 Print Date: 2024-06-01 DOI:10.37190/abb-02458-2024-03
Weiqi Li, Peiming Zhang
{"title":"Investigation of the mechanical characteristics of porcine brain tissue in complex environments.","authors":"Weiqi Li, Peiming Zhang","doi":"10.37190/abb-02458-2024-03","DOIUrl":null,"url":null,"abstract":"<p><p><i>Purpose</i>: Brain tissue immersed in cerebrospinal fluid often exhibits complex mechanical behaviour, especially the nonlinear stress- strain and rate-dependent responses. Despite extensive research into its material properties, the impact of solution environments on the mechanical behaviour of brain tissue remains limited. This knowledge gap affects the biofidelity of head modelling. This study aimed to investigate the effect of solution environments on brain tissue under quasi-static and dynamic loading conditions. <i>Methods</i>: Porcine brain tissue was characterized in compression through quasi-static nonlinear testing and Dynamic Mechanical Analysis under various environments: air, physiological saline and artificial cerebrospinal fluid. Frequencies from 0.1 to 40 Hz were applied to determine dynamic behaviour, while brain samples were compressed up to a 0.3 strain level to obtain nonlinear response. The effects of strain, frequency and solution environment on the mechanical response of brain tissue were statistically evaluated. <i>Results</i>: As environmental conditions transitioned from air to artificial cerebrospinal fluid, the average stress of brain tissue increased by approximately 1.3, 1.3 and 1.4 times at strain levels of 0.1, 0.2 and 0.3, respectively. A statistically significant increase in dynamic storage and loss moduli was observed between air and artificial cerebrospinal fluid environments. At frequencies above 18 Hz, the tan delta in air was significantly lower. <i>Conclusions</i>: The mechanical characterization of brain tissue exhibited a dependency on solution environment under both quasi-static and dynamic loading conditions. Brain tissue showed higher stress levels and dynamic modulus in solution environments compared to an air environment. The results of this study are valuable for improving head simulations and brain material models.</p>","PeriodicalId":519996,"journal":{"name":"Acta of bioengineering and biomechanics","volume":"26 2","pages":"135-142"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta of bioengineering and biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/abb-02458-2024-03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Brain tissue immersed in cerebrospinal fluid often exhibits complex mechanical behaviour, especially the nonlinear stress- strain and rate-dependent responses. Despite extensive research into its material properties, the impact of solution environments on the mechanical behaviour of brain tissue remains limited. This knowledge gap affects the biofidelity of head modelling. This study aimed to investigate the effect of solution environments on brain tissue under quasi-static and dynamic loading conditions. Methods: Porcine brain tissue was characterized in compression through quasi-static nonlinear testing and Dynamic Mechanical Analysis under various environments: air, physiological saline and artificial cerebrospinal fluid. Frequencies from 0.1 to 40 Hz were applied to determine dynamic behaviour, while brain samples were compressed up to a 0.3 strain level to obtain nonlinear response. The effects of strain, frequency and solution environment on the mechanical response of brain tissue were statistically evaluated. Results: As environmental conditions transitioned from air to artificial cerebrospinal fluid, the average stress of brain tissue increased by approximately 1.3, 1.3 and 1.4 times at strain levels of 0.1, 0.2 and 0.3, respectively. A statistically significant increase in dynamic storage and loss moduli was observed between air and artificial cerebrospinal fluid environments. At frequencies above 18 Hz, the tan delta in air was significantly lower. Conclusions: The mechanical characterization of brain tissue exhibited a dependency on solution environment under both quasi-static and dynamic loading conditions. Brain tissue showed higher stress levels and dynamic modulus in solution environments compared to an air environment. The results of this study are valuable for improving head simulations and brain material models.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信