Multidimensional scaling improves distance-based clustering for microbiome data.

Guanhua Chen, Xinyue Wang, Qiang Sun, Zheng-Zheng Tang
{"title":"Multidimensional scaling improves distance-based clustering for microbiome data.","authors":"Guanhua Chen, Xinyue Wang, Qiang Sun, Zheng-Zheng Tang","doi":"10.1093/bioinformatics/btaf042","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Clustering patients into subgroups based on their microbial compositions can greatly enhance our understanding of the role of microbes in human health and disease etiology. Distance-based clustering methods, such as partitioning around medoids (PAM), are popular due to their computational efficiency and absence of distributional assumptions. However, the performance of these methods can be suboptimal when true cluster memberships are driven by differences in the abundance of only a few microbes, a situation known as the sparse signal scenario.</p><p><strong>Results: </strong>We demonstrate that classical multidimensional scaling (MDS), a widely used dimensionality reduction technique, effectively denoises microbiome data and enhances the clustering performance of distance-based methods. We propose a two-step procedure that first applies MDS to project high-dimensional microbiome data into a low-dimensional space, followed by distance-based clustering using the low-dimensional data. Our extensive simulations demonstrate that our procedure offers superior performance compared to directly conducting distance-based clustering under the sparse signal scenario. The advantage of our procedure is further showcased in several real data applications.</p><p><strong>Availability and implementation: </strong>The R package MDSMClust is available at https://github.com/wxy929/MDS-project.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814494/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Clustering patients into subgroups based on their microbial compositions can greatly enhance our understanding of the role of microbes in human health and disease etiology. Distance-based clustering methods, such as partitioning around medoids (PAM), are popular due to their computational efficiency and absence of distributional assumptions. However, the performance of these methods can be suboptimal when true cluster memberships are driven by differences in the abundance of only a few microbes, a situation known as the sparse signal scenario.

Results: We demonstrate that classical multidimensional scaling (MDS), a widely used dimensionality reduction technique, effectively denoises microbiome data and enhances the clustering performance of distance-based methods. We propose a two-step procedure that first applies MDS to project high-dimensional microbiome data into a low-dimensional space, followed by distance-based clustering using the low-dimensional data. Our extensive simulations demonstrate that our procedure offers superior performance compared to directly conducting distance-based clustering under the sparse signal scenario. The advantage of our procedure is further showcased in several real data applications.

Availability and implementation: The R package MDSMClust is available at https://github.com/wxy929/MDS-project.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信