A novel clinical investigation using deep learning and human-in-the-loop approach in orbital volume measurement.

IF 2.1 2区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE
Yong June Chang, Jungrae Cho, Byungeun Shon, Kang Young Choi, Sungmoon Jeong, Jeong Yeop Ryu
{"title":"A novel clinical investigation using deep learning and human-in-the-loop approach in orbital volume measurement.","authors":"Yong June Chang, Jungrae Cho, Byungeun Shon, Kang Young Choi, Sungmoon Jeong, Jeong Yeop Ryu","doi":"10.1016/j.jcms.2025.01.007","DOIUrl":null,"url":null,"abstract":"<p><p>Orbital volume assessment is crucial for surgical planning. Traditional methods lack efficiency and accuracy. Recent studies explore AI-driven techniques, but research on their clinical effectiveness is limited. This study included 349 patients aged 19 years and above, who underwent three-dimensional facial computed tomography (3DCT) without orbital trauma or congenital anomalies. To construct an AI training dataset, manual segmentation was performed on 178 patients' 3DCT using 3D Slicer. The remaining data of 171 patients underwent human-in-the-loop method, resulting in a dataset of 349 annotated samples. Comparative analysis of Dice coefficients and execution speeds was performed between manual and semi-automated segmentations. Comparing AI-assisted semi-automated segmentation with manual segmentation, all six annotators demonstrated lower average inference times without a significant difference in Dice coefficients (90.31% vs. 88.72%). For 178 patients' 3DCT, a high average Dice coefficient of 89.9% was observed, and a 38.42-ms inference time was recorded. For the full dataset, the AI model achieved a high average Dice coefficient of 94.1% and a fast average inference time of 32.55 ms per axial slice. This study demonstrates the potential of AI for maintaining high accuracy and time-efficiency in orbital region segmentation, with wide clinical applications.</p>","PeriodicalId":54851,"journal":{"name":"Journal of Cranio-Maxillofacial Surgery","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cranio-Maxillofacial Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jcms.2025.01.007","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Orbital volume assessment is crucial for surgical planning. Traditional methods lack efficiency and accuracy. Recent studies explore AI-driven techniques, but research on their clinical effectiveness is limited. This study included 349 patients aged 19 years and above, who underwent three-dimensional facial computed tomography (3DCT) without orbital trauma or congenital anomalies. To construct an AI training dataset, manual segmentation was performed on 178 patients' 3DCT using 3D Slicer. The remaining data of 171 patients underwent human-in-the-loop method, resulting in a dataset of 349 annotated samples. Comparative analysis of Dice coefficients and execution speeds was performed between manual and semi-automated segmentations. Comparing AI-assisted semi-automated segmentation with manual segmentation, all six annotators demonstrated lower average inference times without a significant difference in Dice coefficients (90.31% vs. 88.72%). For 178 patients' 3DCT, a high average Dice coefficient of 89.9% was observed, and a 38.42-ms inference time was recorded. For the full dataset, the AI model achieved a high average Dice coefficient of 94.1% and a fast average inference time of 32.55 ms per axial slice. This study demonstrates the potential of AI for maintaining high accuracy and time-efficiency in orbital region segmentation, with wide clinical applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
22.60%
发文量
117
审稿时长
70 days
期刊介绍: The Journal of Cranio-Maxillofacial Surgery publishes articles covering all aspects of surgery of the head, face and jaw. Specific topics covered recently have included: • Distraction osteogenesis • Synthetic bone substitutes • Fibroblast growth factors • Fetal wound healing • Skull base surgery • Computer-assisted surgery • Vascularized bone grafts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信