CXCR4 promotes tumor stemness maintenance and CDK4/6 inhibitors resistance in ER-positive breast cancer.

IF 7.4 1区 医学 Q1 Medicine
Qiangfeng Shi, Wang Yang, Yiye Ouyang, Yujie Liu, Zijie Cai
{"title":"CXCR4 promotes tumor stemness maintenance and CDK4/6 inhibitors resistance in ER-positive breast cancer.","authors":"Qiangfeng Shi, Wang Yang, Yiye Ouyang, Yujie Liu, Zijie Cai","doi":"10.1186/s13058-025-01965-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>CDK4/6 inhibitors have significantly improved the survival of patients with HR-positive/HER2-negative breast cancer, becoming a first-line treatment option. However, the development of resistance to these inhibitors is inevitable. To address this challenge, novel strategies are required to overcome resistance, necessitating a deeper understanding of its mechanisms. Recent research has identified several dysregulated genes in CDK4/6 inhibitors-resistant breast cancer, but the underlying mechanism is complex due to tumor heterogeneity and warrants further investigation.</p><p><strong>Methods: </strong>RNA sequencing and KEGG pathway analysis was carried out to identify the mainly dysregulated genes in CDK4/6 inhibitors-resistant breast cancer cells. The effects of CXCR4 knockdown and overexpression via siRNAs and plasmids transfection were examined by mammosphere formation, RT-qPCR, flow cytometry, MTT and colony formation assays. The regulation mechanisms were analyzed by RT-qPCR, western blotting and immunofluorescence experiments. Mouse xenografts were used to analyze the role of CXCR4 in regulation palbociclib sensitivity in vivo. Additionally, we collected the clinical samples and performed immunohistochemistry to analyze the clinical significance of CXCR4.</p><p><strong>Results: </strong>In our study, we focused on cancer stem cells, a critical contributor to cancer metastasis and therapy resistance, and detected an upregulation of stemness in our established palbociclib-resistant ER-positive breast cancer cells. Additionally, our research pinpointed CXCR4 as a pivotal gene responsible for maintaining cancer stemness and promoting palbociclib resistance. Mechanistically, CXCR4 activates the WNT5A/β-catenin signaling pathway by enhancing the expression of WNT5A and β-catenin, facilitating the nuclear translocation of β-catenin protein. Targeting CXCR4 using siRNAs or small molecular inhibitors effectively reduces cancer stemness and reverses palbociclib resistance both in vitro and in vivo. Clinical sample analysis further underscores the overactivation of the CXCR4/WNT5A/β-catenin axis in palbociclib-resistant breast cancer, suggesting CXCR4 as a potential biomarker for predicting resistance to CDK4/6 inhibitors.</p><p><strong>Conclusions: </strong>Collectively, our study demonstrates that CXCR4 overexpression plays a vital role in maintaining breast cancer stemness and promoting resistance to CDK4/6 inhibitors through the activation of the WNT5A/β-catenin pathway. Targeting CXCR4 may offer a promising therapeutic approach for advanced CDK4/6 inhibitor-resistant ER-positive breast cancer.</p>","PeriodicalId":49227,"journal":{"name":"Breast Cancer Research","volume":"27 1","pages":"15"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773848/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13058-025-01965-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: CDK4/6 inhibitors have significantly improved the survival of patients with HR-positive/HER2-negative breast cancer, becoming a first-line treatment option. However, the development of resistance to these inhibitors is inevitable. To address this challenge, novel strategies are required to overcome resistance, necessitating a deeper understanding of its mechanisms. Recent research has identified several dysregulated genes in CDK4/6 inhibitors-resistant breast cancer, but the underlying mechanism is complex due to tumor heterogeneity and warrants further investigation.

Methods: RNA sequencing and KEGG pathway analysis was carried out to identify the mainly dysregulated genes in CDK4/6 inhibitors-resistant breast cancer cells. The effects of CXCR4 knockdown and overexpression via siRNAs and plasmids transfection were examined by mammosphere formation, RT-qPCR, flow cytometry, MTT and colony formation assays. The regulation mechanisms were analyzed by RT-qPCR, western blotting and immunofluorescence experiments. Mouse xenografts were used to analyze the role of CXCR4 in regulation palbociclib sensitivity in vivo. Additionally, we collected the clinical samples and performed immunohistochemistry to analyze the clinical significance of CXCR4.

Results: In our study, we focused on cancer stem cells, a critical contributor to cancer metastasis and therapy resistance, and detected an upregulation of stemness in our established palbociclib-resistant ER-positive breast cancer cells. Additionally, our research pinpointed CXCR4 as a pivotal gene responsible for maintaining cancer stemness and promoting palbociclib resistance. Mechanistically, CXCR4 activates the WNT5A/β-catenin signaling pathway by enhancing the expression of WNT5A and β-catenin, facilitating the nuclear translocation of β-catenin protein. Targeting CXCR4 using siRNAs or small molecular inhibitors effectively reduces cancer stemness and reverses palbociclib resistance both in vitro and in vivo. Clinical sample analysis further underscores the overactivation of the CXCR4/WNT5A/β-catenin axis in palbociclib-resistant breast cancer, suggesting CXCR4 as a potential biomarker for predicting resistance to CDK4/6 inhibitors.

Conclusions: Collectively, our study demonstrates that CXCR4 overexpression plays a vital role in maintaining breast cancer stemness and promoting resistance to CDK4/6 inhibitors through the activation of the WNT5A/β-catenin pathway. Targeting CXCR4 may offer a promising therapeutic approach for advanced CDK4/6 inhibitor-resistant ER-positive breast cancer.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
76
审稿时长
12 weeks
期刊介绍: Breast Cancer Research, an international, peer-reviewed online journal, publishes original research, reviews, editorials, and reports. It features open-access research articles of exceptional interest across all areas of biology and medicine relevant to breast cancer. This includes normal mammary gland biology, with a special emphasis on the genetic, biochemical, and cellular basis of breast cancer. In addition to basic research, the journal covers preclinical, translational, and clinical studies with a biological basis, including Phase I and Phase II trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信