{"title":"In silico protein structural analysis of PRMT5 and RUVBL1 mutations arising in human cancers.","authors":"Majd Al-Marrawi, Ruben C Petreaca, Renee A Bouley","doi":"10.1016/j.cancergen.2025.01.002","DOIUrl":null,"url":null,"abstract":"<p><p>DNA double strand breaks (DSBs) can be generated spontaneously during DNA replication and are repaired primarily by Homologous Recombination (HR). However, efficient repair requires chromatin remodeling to allow the recombination machinery access to the break. TIP60 is a complex conserved from yeast to humans that is required for histone acetylation and modulation of HR activity at DSBs. Two enzymatic activities within the TIP60 complex, KAT5 (a histone acetyltransferase) and RUVBL1 (an AAA+ ATPase) are required for efficient HR repair. Post-translational modification of RUVBL1 by the PRMT5 methyltransferase activates the complex acetyltransferase activity and facilitates error free HR repair. In S. pombe a direct interaction between PRMT5 and the acetyltransferase subunit of the TIP60 complex (KAT5) was also identified. The TIP60 complex has been partially solved experimentally in both humans and S. cerevisiae, but not S. pombe. Here, we used in silico protein structure analysis to investigate structural conservation between S. pombe and human PRMT5 and RUVBL1. We found that there is more similarity in structure conservation between S. pombe and human proteins than between S. cerevisiae and human. Next, we queried the COSMIC database to analyze how mutations occurring in human cancers affect the structure and function of these proteins. Artificial intelligence algorithms that predict how likely mutations are to promote cellular transformation and immortalization show that RUVBL1 mutations should have a more drastic effect than PRMT5. Indeed, in silico protein structural analysis shows that PRMT5 mutations are less likely to destabilize enzyme function. Conversely, most RUVBL1 mutations occur in a region required for interaction with its partner (RUVBL2). These data suggests that cancer mutations could destabilize the TIP60 complex. Sequence conservation analysis between S. pombe and humans shows that the residues identified in cancer cells are highly conserved, suggesting that this may be an essential process in eukaryotic DSB repair. These results shed light on mechanisms of DSB repair and also highlight how S. pombe remains a great model system for analyzing DSB repair processes that are tractable in human cells.</p>","PeriodicalId":49225,"journal":{"name":"Cancer Genetics","volume":"292-293 ","pages":"49-56"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cancergen.2025.01.002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
DNA double strand breaks (DSBs) can be generated spontaneously during DNA replication and are repaired primarily by Homologous Recombination (HR). However, efficient repair requires chromatin remodeling to allow the recombination machinery access to the break. TIP60 is a complex conserved from yeast to humans that is required for histone acetylation and modulation of HR activity at DSBs. Two enzymatic activities within the TIP60 complex, KAT5 (a histone acetyltransferase) and RUVBL1 (an AAA+ ATPase) are required for efficient HR repair. Post-translational modification of RUVBL1 by the PRMT5 methyltransferase activates the complex acetyltransferase activity and facilitates error free HR repair. In S. pombe a direct interaction between PRMT5 and the acetyltransferase subunit of the TIP60 complex (KAT5) was also identified. The TIP60 complex has been partially solved experimentally in both humans and S. cerevisiae, but not S. pombe. Here, we used in silico protein structure analysis to investigate structural conservation between S. pombe and human PRMT5 and RUVBL1. We found that there is more similarity in structure conservation between S. pombe and human proteins than between S. cerevisiae and human. Next, we queried the COSMIC database to analyze how mutations occurring in human cancers affect the structure and function of these proteins. Artificial intelligence algorithms that predict how likely mutations are to promote cellular transformation and immortalization show that RUVBL1 mutations should have a more drastic effect than PRMT5. Indeed, in silico protein structural analysis shows that PRMT5 mutations are less likely to destabilize enzyme function. Conversely, most RUVBL1 mutations occur in a region required for interaction with its partner (RUVBL2). These data suggests that cancer mutations could destabilize the TIP60 complex. Sequence conservation analysis between S. pombe and humans shows that the residues identified in cancer cells are highly conserved, suggesting that this may be an essential process in eukaryotic DSB repair. These results shed light on mechanisms of DSB repair and also highlight how S. pombe remains a great model system for analyzing DSB repair processes that are tractable in human cells.
期刊介绍:
The aim of Cancer Genetics is to publish high quality scientific papers on the cellular, genetic and molecular aspects of cancer, including cancer predisposition and clinical diagnostic applications. Specific areas of interest include descriptions of new chromosomal, molecular or epigenetic alterations in benign and malignant diseases; novel laboratory approaches for identification and characterization of chromosomal rearrangements or genomic alterations in cancer cells; correlation of genetic changes with pathology and clinical presentation; and the molecular genetics of cancer predisposition. To reach a basic science and clinical multidisciplinary audience, we welcome original full-length articles, reviews, meeting summaries, brief reports, and letters to the editor.