Pedro Pessoa, Max Schweiger, Lance W Q Xu, Tristan Manha, Ayush Saurabh, Julian Antolin Camarena, Steve Pressé
{"title":"Avoiding subtraction and division of stochastic signals using normalizing flows: NFdeconvolve.","authors":"Pedro Pessoa, Max Schweiger, Lance W Q Xu, Tristan Manha, Ayush Saurabh, Julian Antolin Camarena, Steve Pressé","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Across the scientific realm, we find ourselves subtracting or dividing stochastic signals. For instance, consider a stochastic realization, $x$, generated from the addition or multiplication of two stochastic signals $a$ and $b$, namely $x=a+b$ or $x = ab$. For the $x=a+b$ example, $a$ can be fluorescence background and $b$ the signal of interest whose statistics are to be learned from the measured $x$. Similarly, when writing $x=ab$, $a$ can be thought of as the illumination intensity and $b$ the density of fluorescent molecules of interest. Yet dividing or subtracting stochastic signals amplifies noise, and we ask instead whether, using the statistics of $a$ and the measurement of $x$ as input, we can recover the statistics of $b$. Here, we show how normalizing flows can generate an approximation of the probability distribution over $b$, thereby avoiding subtraction or division altogether. This method is implemented in our software package, NFdeconvolve, available on GitHub with a tutorial linked in the main text.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774439/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Across the scientific realm, we find ourselves subtracting or dividing stochastic signals. For instance, consider a stochastic realization, $x$, generated from the addition or multiplication of two stochastic signals $a$ and $b$, namely $x=a+b$ or $x = ab$. For the $x=a+b$ example, $a$ can be fluorescence background and $b$ the signal of interest whose statistics are to be learned from the measured $x$. Similarly, when writing $x=ab$, $a$ can be thought of as the illumination intensity and $b$ the density of fluorescent molecules of interest. Yet dividing or subtracting stochastic signals amplifies noise, and we ask instead whether, using the statistics of $a$ and the measurement of $x$ as input, we can recover the statistics of $b$. Here, we show how normalizing flows can generate an approximation of the probability distribution over $b$, thereby avoiding subtraction or division altogether. This method is implemented in our software package, NFdeconvolve, available on GitHub with a tutorial linked in the main text.