Using machine and deep learning to predict short-term complications following trigger digit release surgery.

IF 0.3 Q4 SURGERY
Journal of Hand and Microsurgery Pub Date : 2024-10-28 eCollection Date: 2025-01-01 DOI:10.1016/j.jham.2024.100171
Rohan M Shah, Rushmin Khazanchi, Anitesh Bajaj, Krishi Rana, Anjay Saklecha, Jennifer Moriatis Wolf
{"title":"Using machine and deep learning to predict short-term complications following trigger digit release surgery.","authors":"Rohan M Shah, Rushmin Khazanchi, Anitesh Bajaj, Krishi Rana, Anjay Saklecha, Jennifer Moriatis Wolf","doi":"10.1016/j.jham.2024.100171","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Trigger finger is a common disorder of the hand characterized by pain and locking of the digits during flexion or extension. In cases refractory to nonoperative management, surgical release of the A1 pulley can be performed. This study evaluates the ability of machine learning (ML) techniques to predict short-term complications following trigger digit release surgery.</p><p><strong>Methods: </strong>A retrospective study was conducted using data for trigger digit release from the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) years 2005-2020. Outcomes of interest were 30-day complications and 30-day return to the operating room. Three ML algorithms were evaluated - a Random Forest (RF), Elastic-Net Regression (ENet), and Extreme Gradient Boosted Tree (XGBoost), along with a deep learning Neural Network (NN). Feature importance analysis was performed in the highest performing model for each outcome to identify predictors with the greatest contributions.</p><p><strong>Results: </strong>We included a total of 1209 cases of trigger digit release. The best algorithm for predicting wound complications was the RF, with an AUC of 0.64 ± 0.04. The XGBoost algorithm was best performing for medical complications (AUC: 0.70 ± 0.06) and reoperations (AUC: 0.60 ± 0.07). All three models had performance significantly above the AUC benchmark of 0.50 ± 0.00. On our feature importance analysis, age was distinctively the highest contributing predictor of wound complications.</p><p><strong>Conclusions: </strong>Machine learning can be successfully used for risk stratification in surgical patients. Moving forwards, it is imperative for hand surgeons to continue evaluating applications of ML in the field.</p>","PeriodicalId":45368,"journal":{"name":"Journal of Hand and Microsurgery","volume":"17 1","pages":"100171"},"PeriodicalIF":0.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770221/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hand and Microsurgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jham.2024.100171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Trigger finger is a common disorder of the hand characterized by pain and locking of the digits during flexion or extension. In cases refractory to nonoperative management, surgical release of the A1 pulley can be performed. This study evaluates the ability of machine learning (ML) techniques to predict short-term complications following trigger digit release surgery.

Methods: A retrospective study was conducted using data for trigger digit release from the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) years 2005-2020. Outcomes of interest were 30-day complications and 30-day return to the operating room. Three ML algorithms were evaluated - a Random Forest (RF), Elastic-Net Regression (ENet), and Extreme Gradient Boosted Tree (XGBoost), along with a deep learning Neural Network (NN). Feature importance analysis was performed in the highest performing model for each outcome to identify predictors with the greatest contributions.

Results: We included a total of 1209 cases of trigger digit release. The best algorithm for predicting wound complications was the RF, with an AUC of 0.64 ± 0.04. The XGBoost algorithm was best performing for medical complications (AUC: 0.70 ± 0.06) and reoperations (AUC: 0.60 ± 0.07). All three models had performance significantly above the AUC benchmark of 0.50 ± 0.00. On our feature importance analysis, age was distinctively the highest contributing predictor of wound complications.

Conclusions: Machine learning can be successfully used for risk stratification in surgical patients. Moving forwards, it is imperative for hand surgeons to continue evaluating applications of ML in the field.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
25.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信