Emma A Elliott Smith, Madonna L Moss, Hannah P Wellman, Verena A Gill, Daniel H Monson, Seth D Newsome
{"title":"Forecasting sea otter recolonization: insights from isotopic analysis of modern and zooarchaeological populations.","authors":"Emma A Elliott Smith, Madonna L Moss, Hannah P Wellman, Verena A Gill, Daniel H Monson, Seth D Newsome","doi":"10.1098/rspb.2024.1682","DOIUrl":null,"url":null,"abstract":"<p><p>Retrospective datasets offer essential context for conservation by revealing species' ecological roles before industrial-era human impacts. We analysed isotopic compositions of pre-industrial and modern sea otters (<i>Enhydra lutris</i>) to reconstruct pre-extirpation ecology and offer insights for management. Our study focuses on southeast Alaska (SEAK), where sea otters are recolonizing, and northern Oregon, where translocations are being considered. We measured bulk bone collagen <i>δ</i><sup>13</sup>C and <i>δ</i><sup>15</sup>N values and essential amino acid <i>δ</i><sup>13</sup>C values of extirpated sea otters from archaeological contexts, and bulk isotopic values from vibrissae of modern SEAK sea otters. We compare these results with published isotopic data of potential prey and additional archaeological datasets. In SEAK, our data show pre-industrial sea otter populations consumed infaunal bivalves and used soft-sediment (33%) and kelp forest habitats (67%), with sub-regional variation. We anticipate current populations will expand into this historical niche, and conflict with regional traditional/subsistence bivalve fisheries will persist. In northern Oregon, isotopic data from extirpated sea otters indicate past consumption of low trophic level invertebrates and a stronger reliance on kelp forests (88%) rather than soft-sediment habitats, highlighting the importance of kelp forests for future translocations. Our work exemplifies the value of historical ecology in informing conservation strategies for recovering species.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"292 2039","pages":"20241682"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775623/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.1682","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Retrospective datasets offer essential context for conservation by revealing species' ecological roles before industrial-era human impacts. We analysed isotopic compositions of pre-industrial and modern sea otters (Enhydra lutris) to reconstruct pre-extirpation ecology and offer insights for management. Our study focuses on southeast Alaska (SEAK), where sea otters are recolonizing, and northern Oregon, where translocations are being considered. We measured bulk bone collagen δ13C and δ15N values and essential amino acid δ13C values of extirpated sea otters from archaeological contexts, and bulk isotopic values from vibrissae of modern SEAK sea otters. We compare these results with published isotopic data of potential prey and additional archaeological datasets. In SEAK, our data show pre-industrial sea otter populations consumed infaunal bivalves and used soft-sediment (33%) and kelp forest habitats (67%), with sub-regional variation. We anticipate current populations will expand into this historical niche, and conflict with regional traditional/subsistence bivalve fisheries will persist. In northern Oregon, isotopic data from extirpated sea otters indicate past consumption of low trophic level invertebrates and a stronger reliance on kelp forests (88%) rather than soft-sediment habitats, highlighting the importance of kelp forests for future translocations. Our work exemplifies the value of historical ecology in informing conservation strategies for recovering species.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.