Metabolic effects of heterocyclic amines on insulin‑induced AKT phosphorylation and gluconeogenic gene expression are modified by N-acetyltransferase 2 genetic polymorphism.
IF 1.7 3区 医学Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Kennedy M Walls, Jonathan Y Joh, Madeline M Martinez, Kyung U Hong, David W Hein
{"title":"Metabolic effects of heterocyclic amines on insulin‑induced AKT phosphorylation and gluconeogenic gene expression are modified by N-acetyltransferase 2 genetic polymorphism.","authors":"Kennedy M Walls, Jonathan Y Joh, Madeline M Martinez, Kyung U Hong, David W Hein","doi":"10.1097/FPC.0000000000000559","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Heterocyclic amines (HCAs) are mutagens and carcinogens primarily generated when cooking meat at high temperatures or until well-done, and their major metabolic pathway includes hepatic N-hydroxylation via CYP1A2 followed by O-acetylation via N-acetyltransferase 2 (NAT2). NAT2 expresses a well-defined genetic polymorphism in humans resulting in rapid and slow acetylators. Recent epidemiological studies reported significant associations between dietary HCA exposure and insulin resistance and type II diabetes.</p><p><strong>Methods: </strong>We assessed the effect of some of the most common HCAs found in cooked meat, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, on insulin signaling and gluconeogenic gene expression in cryopreserved human hepatocytes characterized by their NAT2 genotype and phenotype to investigate the role of NAT2 genetic polymorphism in HCA-induced metabolic dysregulation.</p><p><strong>Results: </strong>HCA treatment significantly reduced insulin-induced protein kinase B phosphorylation and significantly increased expression of genes involved in gluconeogenesis (G6PC, PCK1, FOXO1, and PPARA) in cryopreserved human hepatocytes from rapid but not from slow acetylators.</p><p><strong>Conclusion: </strong>The findings suggest that NAT2 genetic polymorphism modifies HCA-induced insulin resistance and gluconeogenic gene expression, implying that individuals with rapid acetylator phenotype may be at greater risk of dysregulated glucose homeostasis following exposure to HCAs.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenetics and genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FPC.0000000000000559","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Heterocyclic amines (HCAs) are mutagens and carcinogens primarily generated when cooking meat at high temperatures or until well-done, and their major metabolic pathway includes hepatic N-hydroxylation via CYP1A2 followed by O-acetylation via N-acetyltransferase 2 (NAT2). NAT2 expresses a well-defined genetic polymorphism in humans resulting in rapid and slow acetylators. Recent epidemiological studies reported significant associations between dietary HCA exposure and insulin resistance and type II diabetes.
Methods: We assessed the effect of some of the most common HCAs found in cooked meat, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, on insulin signaling and gluconeogenic gene expression in cryopreserved human hepatocytes characterized by their NAT2 genotype and phenotype to investigate the role of NAT2 genetic polymorphism in HCA-induced metabolic dysregulation.
Results: HCA treatment significantly reduced insulin-induced protein kinase B phosphorylation and significantly increased expression of genes involved in gluconeogenesis (G6PC, PCK1, FOXO1, and PPARA) in cryopreserved human hepatocytes from rapid but not from slow acetylators.
Conclusion: The findings suggest that NAT2 genetic polymorphism modifies HCA-induced insulin resistance and gluconeogenic gene expression, implying that individuals with rapid acetylator phenotype may be at greater risk of dysregulated glucose homeostasis following exposure to HCAs.
期刊介绍:
Pharmacogenetics and Genomics is devoted to the rapid publication of research papers, brief review articles and short communications on genetic determinants in response to drugs and other chemicals in humans and animals. The Journal brings together papers from the entire spectrum of biomedical research and science, including biochemistry, bioinformatics, clinical pharmacology, clinical pharmacy, epidemiology, genetics, genomics, molecular biology, pharmacology, pharmaceutical sciences, and toxicology. Under a single cover, the Journal provides a forum for all aspects of the genetics and genomics of host response to exogenous chemicals: from the gene to the clinic.