Daniel Henrik Nevermann, Claudius Gros, Jay T Lennon
{"title":"A Game of Life with dormancy.","authors":"Daniel Henrik Nevermann, Claudius Gros, Jay T Lennon","doi":"10.1098/rspb.2024.2543","DOIUrl":null,"url":null,"abstract":"<p><p>The factors contributing to the persistence and stability of life are fundamental for understanding complex living systems. Organisms are commonly challenged by harsh and fluctuating environments that are suboptimal for growth and reproduction, which can lead to extinction. Many species contend with unfavourable and noisy conditions by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy. Here, we develop Spore Life, a model to investigate the effects of dormancy on population dynamics. It is based on Conway's Game of Life (GoL), a deterministic cellular automaton where simple rules govern the metabolic state of an individual based on the metabolic state of its neighbours. For individuals that would otherwise die, Spore Life provides a refuge in the form of an inactive state. These dormant individuals (spores) can resuscitate when local conditions improve. The model includes a parameter [Formula: see text] that controls the survival probability of spores, interpolating between GoL ([Formula: see text]) and Spore Life ([Formula: see text]), while capturing stochastic dynamics in the intermediate regime ([Formula: see text]). In addition to identifying the emergence of unique periodic configurations, we find that spore survival increases the average number of active individuals and buffers populations from extinction. Contrary to expectations, stabilization of the population is not the result of a large and long-lived seed bank. Instead, the demographic patterns in Spore Life only require a small number of resuscitation events. Our approach yields novel insight into what is minimally required for the origins of complex behaviours associated with dormancy and the seed banks that they generate.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"292 2039","pages":"20242543"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775590/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.2543","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The factors contributing to the persistence and stability of life are fundamental for understanding complex living systems. Organisms are commonly challenged by harsh and fluctuating environments that are suboptimal for growth and reproduction, which can lead to extinction. Many species contend with unfavourable and noisy conditions by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy. Here, we develop Spore Life, a model to investigate the effects of dormancy on population dynamics. It is based on Conway's Game of Life (GoL), a deterministic cellular automaton where simple rules govern the metabolic state of an individual based on the metabolic state of its neighbours. For individuals that would otherwise die, Spore Life provides a refuge in the form of an inactive state. These dormant individuals (spores) can resuscitate when local conditions improve. The model includes a parameter [Formula: see text] that controls the survival probability of spores, interpolating between GoL ([Formula: see text]) and Spore Life ([Formula: see text]), while capturing stochastic dynamics in the intermediate regime ([Formula: see text]). In addition to identifying the emergence of unique periodic configurations, we find that spore survival increases the average number of active individuals and buffers populations from extinction. Contrary to expectations, stabilization of the population is not the result of a large and long-lived seed bank. Instead, the demographic patterns in Spore Life only require a small number of resuscitation events. Our approach yields novel insight into what is minimally required for the origins of complex behaviours associated with dormancy and the seed banks that they generate.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.