2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP+-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells.

IF 3.2 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Kechen Du, Ying Su, Qiong Song, Shuai Chen, Ribao Wu, Xiahong Teng, Renbin Huang, Lihui Wang, Chunlin Zou
{"title":"2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP<sup>+</sup>-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells.","authors":"Kechen Du, Ying Su, Qiong Song, Shuai Chen, Ribao Wu, Xiahong Teng, Renbin Huang, Lihui Wang, Chunlin Zou","doi":"10.1007/s11011-025-01544-7","DOIUrl":null,"url":null,"abstract":"<p><p>2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored. The present study aimed to investigate the protective effects and underlying mechanisms of DMDD in a cellular model of PD. In this study, SH-SY5Y cells were incubated with or without DMDD following intoxication with the parkinsonian neurotoxin 1-methyl-4-phenylpyridine (MPP<sup>+</sup>). Cell viability and apoptosis were evaluated using 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium (MTS) assay and Hoechst 33,342 staining, respectively. The mitochondrial membrane potential (Δψm) was assessed through the JC-10 assay. The activities of superoxide dismutase (SOD) and the levels of reactive oxygen species (ROS) were measured using WST-8 and DCFH-DA assays. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore significant biological processes and pathways influenced by DMDD. Molecular docking was employed to predict the domains of potential protein targets interacting with DMDD. Western blotting was subsequently conducted to determine the protein expression levels of TH, Nrf2, Bax, Bcl-2, Caspase-3, Beclin-1, PARP, LC3-II, LC3-I, p-PI3K, PI3K, p-mTOR and mTOR. Our study showed that DMDD treatment significantly increased cell viability and reduced apoptosis in MPP<sup>+</sup>-treated SH-SY5Y cells. In addition, DMDD treatment reversed the loss of TH expression and Δψm in MPP<sup>+</sup>-exposed SH-SY5Y cells. Moreover, DMDD treatment reduced MPP+-induced ROS production by promoting SOD activity. Additionally, compared with those in the MPP<sup>+</sup> group, the protein expression levels of Beclin-1, Caspase-3, and PARP and the LC3II/I ratio were significantly decreased, whereas the protein expression levels of Nrf2 and the Bcl-2/Bax, p-PI3K/PI3K, and p-mTOR/mTOR ratios were significantly increased in the DMDD-treated group. In conclusion, DMDD protects against MPP<sup>+</sup>-induced cytotoxicity by mitigating oxidative stress, apoptosis, and autophagy. PI3K/mTOR signaling at least partly mediates the cytoprotective effect of DMDD.</p>","PeriodicalId":18685,"journal":{"name":"Metabolic brain disease","volume":"40 1","pages":"113"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic brain disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-025-01544-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored. The present study aimed to investigate the protective effects and underlying mechanisms of DMDD in a cellular model of PD. In this study, SH-SY5Y cells were incubated with or without DMDD following intoxication with the parkinsonian neurotoxin 1-methyl-4-phenylpyridine (MPP+). Cell viability and apoptosis were evaluated using 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium (MTS) assay and Hoechst 33,342 staining, respectively. The mitochondrial membrane potential (Δψm) was assessed through the JC-10 assay. The activities of superoxide dismutase (SOD) and the levels of reactive oxygen species (ROS) were measured using WST-8 and DCFH-DA assays. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore significant biological processes and pathways influenced by DMDD. Molecular docking was employed to predict the domains of potential protein targets interacting with DMDD. Western blotting was subsequently conducted to determine the protein expression levels of TH, Nrf2, Bax, Bcl-2, Caspase-3, Beclin-1, PARP, LC3-II, LC3-I, p-PI3K, PI3K, p-mTOR and mTOR. Our study showed that DMDD treatment significantly increased cell viability and reduced apoptosis in MPP+-treated SH-SY5Y cells. In addition, DMDD treatment reversed the loss of TH expression and Δψm in MPP+-exposed SH-SY5Y cells. Moreover, DMDD treatment reduced MPP+-induced ROS production by promoting SOD activity. Additionally, compared with those in the MPP+ group, the protein expression levels of Beclin-1, Caspase-3, and PARP and the LC3II/I ratio were significantly decreased, whereas the protein expression levels of Nrf2 and the Bcl-2/Bax, p-PI3K/PI3K, and p-mTOR/mTOR ratios were significantly increased in the DMDD-treated group. In conclusion, DMDD protects against MPP+-induced cytotoxicity by mitigating oxidative stress, apoptosis, and autophagy. PI3K/mTOR signaling at least partly mediates the cytoprotective effect of DMDD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Metabolic brain disease
Metabolic brain disease 医学-内分泌学与代谢
CiteScore
5.90
自引率
5.60%
发文量
248
审稿时长
6-12 weeks
期刊介绍: Metabolic Brain Disease serves as a forum for the publication of outstanding basic and clinical papers on all metabolic brain disease, including both human and animal studies. The journal publishes papers on the fundamental pathogenesis of these disorders and on related experimental and clinical techniques and methodologies. Metabolic Brain Disease is directed to physicians, neuroscientists, internists, psychiatrists, neurologists, pathologists, and others involved in the research and treatment of a broad range of metabolic brain disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信