Multiple token rearrangement Transformer network with explicit superpixel constraint for segmentation of echocardiography

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wanli Ding , Heye Zhang , Xiujian Liu , Zhenxuan Zhang , Shuxin Zhuang , Zhifan Gao , Lin Xu
{"title":"Multiple token rearrangement Transformer network with explicit superpixel constraint for segmentation of echocardiography","authors":"Wanli Ding ,&nbsp;Heye Zhang ,&nbsp;Xiujian Liu ,&nbsp;Zhenxuan Zhang ,&nbsp;Shuxin Zhuang ,&nbsp;Zhifan Gao ,&nbsp;Lin Xu","doi":"10.1016/j.media.2025.103470","DOIUrl":null,"url":null,"abstract":"<div><div>Diagnostic cardiologists have considerable clinical demand for precise segmentation of echocardiography to diagnose cardiovascular disease. The paradox is that manual segmentation of echocardiography is a time-consuming and operator-dependent task. Computer-aided segmentation can reduce the workflow greatly. However, it is challenging to segment multi-type echocardiography, which is reflected in differential anatomic structures, artifacts, and blurred borderline. This study proposes the multiple token rearrangement Transformer network (MTRT-Net) embedded in three novel modules to address the corresponding three challenges. First, the depthwise deformable attention module can extract flexible features to adapt to anatomic structures of echocardiography with different ages and diseases. Second, the superpixel supervised module can cluster similar features and keep discriminative features away to make the segmentation regions tend to be an entire body. The artifacts have the influence in separating the complete internal region. Third, the atrous affinity aggregation module can integrate affinity features near the borderline to judge the blurred regions. Overall, the three modules rearrange the relationships of tokens and broaden the diversity of features. Besides, the explicit constraint brought by the superpixel supervised module enhances the performance of fitting ability. This study has 13747 echocardiography to train and test the MTRT-Net. Abundant experiments also validate the performance of MTRT-Net. Therefore, MTRT-Net can assist the diagnostician in segmenting the echocardiography precisely.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"Article 103470"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525000180","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Diagnostic cardiologists have considerable clinical demand for precise segmentation of echocardiography to diagnose cardiovascular disease. The paradox is that manual segmentation of echocardiography is a time-consuming and operator-dependent task. Computer-aided segmentation can reduce the workflow greatly. However, it is challenging to segment multi-type echocardiography, which is reflected in differential anatomic structures, artifacts, and blurred borderline. This study proposes the multiple token rearrangement Transformer network (MTRT-Net) embedded in three novel modules to address the corresponding three challenges. First, the depthwise deformable attention module can extract flexible features to adapt to anatomic structures of echocardiography with different ages and diseases. Second, the superpixel supervised module can cluster similar features and keep discriminative features away to make the segmentation regions tend to be an entire body. The artifacts have the influence in separating the complete internal region. Third, the atrous affinity aggregation module can integrate affinity features near the borderline to judge the blurred regions. Overall, the three modules rearrange the relationships of tokens and broaden the diversity of features. Besides, the explicit constraint brought by the superpixel supervised module enhances the performance of fitting ability. This study has 13747 echocardiography to train and test the MTRT-Net. Abundant experiments also validate the performance of MTRT-Net. Therefore, MTRT-Net can assist the diagnostician in segmenting the echocardiography precisely.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信