The high-osmolarity glycerol (HOG) pathway in Candida auris.

IF 5.1 1区 生物学 Q1 MICROBIOLOGY
mBio Pub Date : 2025-01-29 DOI:10.1128/mbio.03538-24
Hajar Yaakoub, Vincent Courdavault, Nicolas Papon
{"title":"The high-osmolarity glycerol (HOG) pathway in <i>Candida auris</i>.","authors":"Hajar Yaakoub, Vincent Courdavault, Nicolas Papon","doi":"10.1128/mbio.03538-24","DOIUrl":null,"url":null,"abstract":"<p><p>The emerging fungal pathogen <i>Candida auris</i> is known for its strong skin tropism and resilience against antifungal and disinfection treatment, posing a significant challenge for healthcare units. Although efforts to identify the effectors of its unique pathogenic behavior have been insightful, the role of the high-osmolarity glycerol (HOG) pathway in this context remains unexplored. The study by Shivarathri and co-workers (R. Shivarathri, M. Chauhan, A. Datta, D. Das et al., mBio 15:e02748-24, 2024, https://doi.org/10.1128/mbio.02748-24) sought to address this gap. This report indeed advances our understanding of the critical role of the HOG pathway in <i>C. auris</i> pathogenicity by emphasizing its involvement in skin colonization, biofilm formation, and evasion of phagocyte attack.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0353824"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.03538-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The emerging fungal pathogen Candida auris is known for its strong skin tropism and resilience against antifungal and disinfection treatment, posing a significant challenge for healthcare units. Although efforts to identify the effectors of its unique pathogenic behavior have been insightful, the role of the high-osmolarity glycerol (HOG) pathway in this context remains unexplored. The study by Shivarathri and co-workers (R. Shivarathri, M. Chauhan, A. Datta, D. Das et al., mBio 15:e02748-24, 2024, https://doi.org/10.1128/mbio.02748-24) sought to address this gap. This report indeed advances our understanding of the critical role of the HOG pathway in C. auris pathogenicity by emphasizing its involvement in skin colonization, biofilm formation, and evasion of phagocyte attack.

求助全文
约1分钟内获得全文 求助全文
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信