Cells that survive acute SARS-CoV-2 infection contribute to inflammation and lung regeneration in mice.

IF 5.1 1区 生物学 Q1 MICROBIOLOGY
mBio Pub Date : 2025-01-29 DOI:10.1128/mbio.03693-24
Ruangang Pan, David K Meyerholz, Stanley Perlman
{"title":"Cells that survive acute SARS-CoV-2 infection contribute to inflammation and lung regeneration in mice.","authors":"Ruangang Pan, David K Meyerholz, Stanley Perlman","doi":"10.1128/mbio.03693-24","DOIUrl":null,"url":null,"abstract":"<p><p>Post-acute sequelae of COVID-19 involves several organs, but its basis remains poorly understood. Some infected cells in mice survive the acute infection and persist for extended periods in the respiratory tract but not in other tissues. Here, we describe two experimental models of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection to assess the effect of viral virulence on previously infected cells. Both approaches use lineage tracking of previously infected cells. In mice infected with a highly pathogenic mouse-adapted SARS-CoV-2, alveolar type 2 cells (AT2) but not alveolar type 1 (AT1) cells survived the acute infection. These cells became activated, differentiated into an AT2-to-AT1 transitional cell state (KRT8<sup>+</sup> pre-alveolar type 1 transitional cell state). Additionally, nearby uninfected AT2 cells upregulated the transitional marker KRT8, thereby contributing to lung regeneration. In mice sensitized to infection by transduction with Ad5-hACE2, the infection is nonlethal, and AT1 cells survived the infection. Consequently, recovery in these mice was more rapid. Taken together, these results provide an explanation for how SARS-CoV-2 virulence contributes to poor outcomes and affects clinical recovery and lung regeneration. We also identified a new mechanism by which SARS-CoV-2 impacts lung recovery, even at times when infectious virus cannot be detected.</p><p><strong>Importance: </strong>A major consequence of the COVID-19 pandemic is that many survivors have long-term sequelae, which are not well understood. These involve many organs, with the respiratory tract being a common site of long-term effects. Many of these sequelae can be found in mice infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In this study, we have focused on the lungs, with particular interest in the fate and role of cells that were infected with SARS-CoV-2 and survived the acute infection. We found that some infected cells survive acute SARS-CoV-2 infection and that these surviving cells both contribute to the immune response in the lungs and are involved in lung recovery. These findings illustrate previously unexplored aspects of recovery from SARS-CoV-2 induced pneumonia and may be relevant for understanding aspects of post-acute sequelae of COVID-19.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0369324"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.03693-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Post-acute sequelae of COVID-19 involves several organs, but its basis remains poorly understood. Some infected cells in mice survive the acute infection and persist for extended periods in the respiratory tract but not in other tissues. Here, we describe two experimental models of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection to assess the effect of viral virulence on previously infected cells. Both approaches use lineage tracking of previously infected cells. In mice infected with a highly pathogenic mouse-adapted SARS-CoV-2, alveolar type 2 cells (AT2) but not alveolar type 1 (AT1) cells survived the acute infection. These cells became activated, differentiated into an AT2-to-AT1 transitional cell state (KRT8+ pre-alveolar type 1 transitional cell state). Additionally, nearby uninfected AT2 cells upregulated the transitional marker KRT8, thereby contributing to lung regeneration. In mice sensitized to infection by transduction with Ad5-hACE2, the infection is nonlethal, and AT1 cells survived the infection. Consequently, recovery in these mice was more rapid. Taken together, these results provide an explanation for how SARS-CoV-2 virulence contributes to poor outcomes and affects clinical recovery and lung regeneration. We also identified a new mechanism by which SARS-CoV-2 impacts lung recovery, even at times when infectious virus cannot be detected.

Importance: A major consequence of the COVID-19 pandemic is that many survivors have long-term sequelae, which are not well understood. These involve many organs, with the respiratory tract being a common site of long-term effects. Many of these sequelae can be found in mice infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In this study, we have focused on the lungs, with particular interest in the fate and role of cells that were infected with SARS-CoV-2 and survived the acute infection. We found that some infected cells survive acute SARS-CoV-2 infection and that these surviving cells both contribute to the immune response in the lungs and are involved in lung recovery. These findings illustrate previously unexplored aspects of recovery from SARS-CoV-2 induced pneumonia and may be relevant for understanding aspects of post-acute sequelae of COVID-19.

求助全文
约1分钟内获得全文 求助全文
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信