Gut Microbiome and Metabolome Changes in Chronic Low Back Pain Patients With Vertebral Bone Marrow Lesions

IF 3.4 3区 医学 Q1 ORTHOPEDICS
JOR Spine Pub Date : 2025-01-27 DOI:10.1002/jsp2.70042
Wentian Li, Ji Tu, Jinjian Zheng, Abhirup Das, Qi Yan, Xiaotao Jiang, Wenyuan Ding, Xupeng Bai, Kaitao Lai, Sidong Yang, Cao Yang, Jun Zou, Ashish D. Diwan, Zhaomin Zheng
{"title":"Gut Microbiome and Metabolome Changes in Chronic Low Back Pain Patients With Vertebral Bone Marrow Lesions","authors":"Wentian Li,&nbsp;Ji Tu,&nbsp;Jinjian Zheng,&nbsp;Abhirup Das,&nbsp;Qi Yan,&nbsp;Xiaotao Jiang,&nbsp;Wenyuan Ding,&nbsp;Xupeng Bai,&nbsp;Kaitao Lai,&nbsp;Sidong Yang,&nbsp;Cao Yang,&nbsp;Jun Zou,&nbsp;Ashish D. Diwan,&nbsp;Zhaomin Zheng","doi":"10.1002/jsp2.70042","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Chronic low back pain (LBP) is a significant global health concern, often linked to vertebral bone marrow lesions (BML), particularly fatty replacement (FR). This study aims to explore the relationship between the gut microbiome, serum metabolome, and FR in chronic LBP patients.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Serum metabolomic profiling and gut microbiome analysis were conducted in chronic LBP patients with and without FR (LBP + FR, <i>n</i> = 40; LBP, <i>n</i> = 40) and Healthy Controls (HC, <i>n</i> = 31). The study investigates alterations in branched-chain amino acids (BCAAs) levels and identifies key microbial species associated with BCAA metabolism. In vitro experiments elucidate the role of BCAAs in adipogenesis of bone marrow mesenchymal stem cells (BM-MSCs) via the SIRT4 pathway.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Chronic LBP patients with FR exhibit depleted BCAA levels in their serum metabolome, along with alterations in the gut microbiome. Specific microbial species, including <i>Ruminococcus gnavus</i>, <i>Roseburia hominis</i>, and <i>Lachnospiraceae bacterium 8 1 57FAA</i>, are identified as influential in BCAA metabolism and BM-MSCs metabolism. In vitro experiments demonstrate the ability of BCAAs to induce BM-MSCs adipogenesis through SIRT4 pathway activation.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>This study sheds light on the intricate relationship between the disturbed gut ecosystem, serum metabolites, and FR in chronic LBP. Dysbiosis in the gut microbiome may contribute to altered BCAA degradation, subsequently promoting BM-MSCs adipogenesis and FR. Understanding these interactions provides insights for targeted therapeutic strategies to mitigate chronic LBP associated with FR by restoring gut microbial balance and modulating serum metabolite profiles.</p>\n </section>\n </div>","PeriodicalId":14876,"journal":{"name":"JOR Spine","volume":"8 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772216/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOR Spine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsp2.70042","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Chronic low back pain (LBP) is a significant global health concern, often linked to vertebral bone marrow lesions (BML), particularly fatty replacement (FR). This study aims to explore the relationship between the gut microbiome, serum metabolome, and FR in chronic LBP patients.

Methods

Serum metabolomic profiling and gut microbiome analysis were conducted in chronic LBP patients with and without FR (LBP + FR, n = 40; LBP, n = 40) and Healthy Controls (HC, n = 31). The study investigates alterations in branched-chain amino acids (BCAAs) levels and identifies key microbial species associated with BCAA metabolism. In vitro experiments elucidate the role of BCAAs in adipogenesis of bone marrow mesenchymal stem cells (BM-MSCs) via the SIRT4 pathway.

Results

Chronic LBP patients with FR exhibit depleted BCAA levels in their serum metabolome, along with alterations in the gut microbiome. Specific microbial species, including Ruminococcus gnavus, Roseburia hominis, and Lachnospiraceae bacterium 8 1 57FAA, are identified as influential in BCAA metabolism and BM-MSCs metabolism. In vitro experiments demonstrate the ability of BCAAs to induce BM-MSCs adipogenesis through SIRT4 pathway activation.

Conclusion

This study sheds light on the intricate relationship between the disturbed gut ecosystem, serum metabolites, and FR in chronic LBP. Dysbiosis in the gut microbiome may contribute to altered BCAA degradation, subsequently promoting BM-MSCs adipogenesis and FR. Understanding these interactions provides insights for targeted therapeutic strategies to mitigate chronic LBP associated with FR by restoring gut microbial balance and modulating serum metabolite profiles.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JOR Spine
JOR Spine ORTHOPEDICS-
CiteScore
6.40
自引率
18.90%
发文量
42
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信