HBV and HBsAg strongly reshape the phenotype, function, and metabolism of DCs according to patients' clinical stage.

IF 5.6 2区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Hepatology Communications Pub Date : 2025-01-29 eCollection Date: 2025-02-01 DOI:10.1097/HC9.0000000000000625
Lucile Dumolard, Theophile Gerster, Florent Chuffart, Thomas Decaens, Marie-Noelle Hilleret, Sylvie Larrat, Philippe Saas, Evelyne Jouvin-Marche, David Durantel, Patrice N Marche, Zuzana Macek Jilkova, Caroline Aspord
{"title":"HBV and HBsAg strongly reshape the phenotype, function, and metabolism of DCs according to patients' clinical stage.","authors":"Lucile Dumolard, Theophile Gerster, Florent Chuffart, Thomas Decaens, Marie-Noelle Hilleret, Sylvie Larrat, Philippe Saas, Evelyne Jouvin-Marche, David Durantel, Patrice N Marche, Zuzana Macek Jilkova, Caroline Aspord","doi":"10.1097/HC9.0000000000000625","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hepatitis B is a liver infection caused by HBV. Infected individuals who fail to control the viral infection develop chronic hepatitis B and are at risk of developing life-threatening liver diseases, such as cirrhosis or liver cancer. Dendritic cells (DCs) play important roles in the immune response against HBV but are functionally impaired in patients with chronic hepatitis B. The underlying mechanisms involved in HBV-induced DC dysfunctions remain to be elucidated.</p><p><strong>Methods: </strong>We explored DC modulations by HBV and HBsAg by exposing blood-derived cDC1s, cDC2s, and plasmacytoid DCs from healthy donors to HBV or HBsAg and stimulating them with toll-like receptor ligand. Their phenotypic and functional features, as well as their metabolic profile, were analyzed through multiparametric flow cytometry and multiplex assays and further explored on patients' samples.</p><p><strong>Results: </strong>We found that HBV deeply reshaped the DC secretome in response to toll-like receptor ligand. Strikingly, we observed that HBV-exposed DCs secrete high levels of CX3CL1 (fractalkine), a chemokine responsible for attracting antiviral effectors to the site of infection. HBsAg exposure favored DC activation while drastically altering TRAIL expression in response to toll-like receptor ligand and increasing the secretion of cytokines/chemokines involved in immune tolerance. HBsAg further dampened the metabolism of DC subsets while driving metabolic switches. Notably, the relevance of the CX3CL1/CX3CR1 axis, TGF-β, and metabolic disturbances was demonstrated within intrahepatic DC subsets in patients according to disease stage.</p><p><strong>Conclusions: </strong>Our work brings new insights into the immunomodulation induced by HBV on DCs, which contribute to impaired antiviral responses and progression toward chronicity.</p>","PeriodicalId":12978,"journal":{"name":"Hepatology Communications","volume":"9 2","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hepatology Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HC9.0000000000000625","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Hepatitis B is a liver infection caused by HBV. Infected individuals who fail to control the viral infection develop chronic hepatitis B and are at risk of developing life-threatening liver diseases, such as cirrhosis or liver cancer. Dendritic cells (DCs) play important roles in the immune response against HBV but are functionally impaired in patients with chronic hepatitis B. The underlying mechanisms involved in HBV-induced DC dysfunctions remain to be elucidated.

Methods: We explored DC modulations by HBV and HBsAg by exposing blood-derived cDC1s, cDC2s, and plasmacytoid DCs from healthy donors to HBV or HBsAg and stimulating them with toll-like receptor ligand. Their phenotypic and functional features, as well as their metabolic profile, were analyzed through multiparametric flow cytometry and multiplex assays and further explored on patients' samples.

Results: We found that HBV deeply reshaped the DC secretome in response to toll-like receptor ligand. Strikingly, we observed that HBV-exposed DCs secrete high levels of CX3CL1 (fractalkine), a chemokine responsible for attracting antiviral effectors to the site of infection. HBsAg exposure favored DC activation while drastically altering TRAIL expression in response to toll-like receptor ligand and increasing the secretion of cytokines/chemokines involved in immune tolerance. HBsAg further dampened the metabolism of DC subsets while driving metabolic switches. Notably, the relevance of the CX3CL1/CX3CR1 axis, TGF-β, and metabolic disturbances was demonstrated within intrahepatic DC subsets in patients according to disease stage.

Conclusions: Our work brings new insights into the immunomodulation induced by HBV on DCs, which contribute to impaired antiviral responses and progression toward chronicity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Hepatology Communications
Hepatology Communications GASTROENTEROLOGY & HEPATOLOGY-
CiteScore
8.00
自引率
2.00%
发文量
248
审稿时长
8 weeks
期刊介绍: Hepatology Communications is a peer-reviewed, online-only, open access journal for fast dissemination of high quality basic, translational, and clinical research in hepatology. Hepatology Communications maintains high standard and rigorous peer review. Because of its open access nature, authors retain the copyright to their works, all articles are immediately available and free to read and share, and it is fully compliant with funder and institutional mandates. The journal is committed to fast publication and author satisfaction. ​
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信