Adipokines regulate the development and progression of MASLD through organellar oxidative stress.

IF 5.6 2区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Hepatology Communications Pub Date : 2025-01-29 eCollection Date: 2025-02-01 DOI:10.1097/HC9.0000000000000639
Ke Zhao, Heng Zhang, Wenyu Ding, Xiaoshuai Yu, Yanli Hou, Xihong Liu, Xinhua Li, Xiaolei Wang
{"title":"Adipokines regulate the development and progression of MASLD through organellar oxidative stress.","authors":"Ke Zhao, Heng Zhang, Wenyu Ding, Xiaoshuai Yu, Yanli Hou, Xihong Liu, Xinhua Li, Xiaolei Wang","doi":"10.1097/HC9.0000000000000639","DOIUrl":null,"url":null,"abstract":"<p><p>The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), which is increasingly being recognized as a leading cause of chronic liver pathology globally, is increasing. The pathophysiological underpinnings of its progression, which is currently under active investigation, involve oxidative stress. Human adipose tissue, an integral endocrine organ, secretes an array of adipokines that are modulated by dietary patterns and lifestyle choices. These adipokines intricately orchestrate regulatory pathways that impact glucose and lipid metabolism, oxidative stress, and mitochondrial function, thereby influencing the evolution of hepatic steatosis and progression to metabolic dysfunction-associated steatohepatitis (MASH). This review examines recent data, underscoring the critical interplay of oxidative stress, reactive oxygen species, and redox signaling in adipokine-mediated mechanisms. The role of various adipokines in regulating the onset and progression of MASLD/MASH through mitochondrial dysfunction and endoplasmic reticulum stress and the underlying mechanisms are discussed. Due to the emerging correlation between adipokines and the development of MASLD positions, these adipokines are potential targets for the development of innovative therapeutic interventions for MASLD management. A comprehensive understanding of the pathogenesis of MASLD/MASH is instrumental for identifying therapies for MASH.</p>","PeriodicalId":12978,"journal":{"name":"Hepatology Communications","volume":"9 2","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781772/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hepatology Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HC9.0000000000000639","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), which is increasingly being recognized as a leading cause of chronic liver pathology globally, is increasing. The pathophysiological underpinnings of its progression, which is currently under active investigation, involve oxidative stress. Human adipose tissue, an integral endocrine organ, secretes an array of adipokines that are modulated by dietary patterns and lifestyle choices. These adipokines intricately orchestrate regulatory pathways that impact glucose and lipid metabolism, oxidative stress, and mitochondrial function, thereby influencing the evolution of hepatic steatosis and progression to metabolic dysfunction-associated steatohepatitis (MASH). This review examines recent data, underscoring the critical interplay of oxidative stress, reactive oxygen species, and redox signaling in adipokine-mediated mechanisms. The role of various adipokines in regulating the onset and progression of MASLD/MASH through mitochondrial dysfunction and endoplasmic reticulum stress and the underlying mechanisms are discussed. Due to the emerging correlation between adipokines and the development of MASLD positions, these adipokines are potential targets for the development of innovative therapeutic interventions for MASLD management. A comprehensive understanding of the pathogenesis of MASLD/MASH is instrumental for identifying therapies for MASH.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Hepatology Communications
Hepatology Communications GASTROENTEROLOGY & HEPATOLOGY-
CiteScore
8.00
自引率
2.00%
发文量
248
审稿时长
8 weeks
期刊介绍: Hepatology Communications is a peer-reviewed, online-only, open access journal for fast dissemination of high quality basic, translational, and clinical research in hepatology. Hepatology Communications maintains high standard and rigorous peer review. Because of its open access nature, authors retain the copyright to their works, all articles are immediately available and free to read and share, and it is fully compliant with funder and institutional mandates. The journal is committed to fast publication and author satisfaction. ​
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信