Towards practical and privacy-preserving CNN inference service for cloud-based medical imaging analysis: A homomorphic encryption-based approach

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yanan Bai , Hongbo Zhao , Xiaoyu Shi , Lin Chen
{"title":"Towards practical and privacy-preserving CNN inference service for cloud-based medical imaging analysis: A homomorphic encryption-based approach","authors":"Yanan Bai ,&nbsp;Hongbo Zhao ,&nbsp;Xiaoyu Shi ,&nbsp;Lin Chen","doi":"10.1016/j.cmpb.2025.108599","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Cloud-based Deep Learning as a Service (DLaaS) has transformed biomedicine by enabling healthcare systems to harness the power of deep learning for biomedical data analysis. However, privacy concerns emerge when sensitive user data must be transmitted to untrusted cloud servers. Existing privacy-preserving solutions are hindered by significant latency issues, stemming from the computational complexity of inner product operations in convolutional layers and the high communication costs of evaluating nonlinear activation functions. These limitations make current solutions impractical for real-world applications.</div></div><div><h3>Methods:</h3><div>In this paper, we address the challenges in mobile cloud-based medical imaging analysis, where users aim to classify private body-related radiological images using a Convolutional Neural Network (CNN) model hosted on a cloud server while ensuring data privacy for both parties. We propose PPCNN, a practical and privacy-preserving framework for CNN Inference. It introduces a novel mixed protocol that combines a low-expansion homomorphic encryption scheme with the noise-based masking method. Our framework is designed based on three key ideas: (1) optimizing computation costs by shifting unnecessary and expensive homomorphic multiplication operations to the offline phase, (2) introducing a coefficient-aware packing method to enable efficient homomorphic operations during the linear layer of the CNN, and (3) employing data masking techniques for nonlinear operations of the CNN to reduce communication costs.</div></div><div><h3>Results:</h3><div>We implemented PPCNN and evaluated its performance on three real-world radiological image datasets. Experimental results show that PPCNN outperforms state-of-the-art methods in mobile cloud scenarios, achieving superior response times and lower usage costs.</div></div><div><h3>Conclusions:</h3><div>This study introduces an efficient and privacy-preserving framework for cloud-based medical imaging analysis, marking a significant step towards practical, secure, and trustworthy AI-driven healthcare solutions.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"261 ","pages":"Article 108599"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725000161","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Objective:

Cloud-based Deep Learning as a Service (DLaaS) has transformed biomedicine by enabling healthcare systems to harness the power of deep learning for biomedical data analysis. However, privacy concerns emerge when sensitive user data must be transmitted to untrusted cloud servers. Existing privacy-preserving solutions are hindered by significant latency issues, stemming from the computational complexity of inner product operations in convolutional layers and the high communication costs of evaluating nonlinear activation functions. These limitations make current solutions impractical for real-world applications.

Methods:

In this paper, we address the challenges in mobile cloud-based medical imaging analysis, where users aim to classify private body-related radiological images using a Convolutional Neural Network (CNN) model hosted on a cloud server while ensuring data privacy for both parties. We propose PPCNN, a practical and privacy-preserving framework for CNN Inference. It introduces a novel mixed protocol that combines a low-expansion homomorphic encryption scheme with the noise-based masking method. Our framework is designed based on three key ideas: (1) optimizing computation costs by shifting unnecessary and expensive homomorphic multiplication operations to the offline phase, (2) introducing a coefficient-aware packing method to enable efficient homomorphic operations during the linear layer of the CNN, and (3) employing data masking techniques for nonlinear operations of the CNN to reduce communication costs.

Results:

We implemented PPCNN and evaluated its performance on three real-world radiological image datasets. Experimental results show that PPCNN outperforms state-of-the-art methods in mobile cloud scenarios, achieving superior response times and lower usage costs.

Conclusions:

This study introduces an efficient and privacy-preserving framework for cloud-based medical imaging analysis, marking a significant step towards practical, secure, and trustworthy AI-driven healthcare solutions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信